2019-2020

Biomolecule Purification, Characterization, and Analysis Catalog

INNOVATIVE LC AND LC-MS CHEMISTRY CONSUMABLES FOR BIOSEPARATIONS

Biomolecule Purification, Characterization, and Analysis

Innovative Technologies from the Leader in Separation Science and Analytical Biochemistry

Advances in the areas of genomics, proteomics, metabolomics, and molecular and system biology continue to revolutionize the diagnosis and treatment of diseases and increase our fundamental understanding of biological processes.

As a leading analytical supplier of instrumentation, software, service and support, and chemistry products, Waters is uniquely positioned to provide researchers the tools, technologies, and integrated solutions desired to tackle the formidable challenges involving various biomolecules. Beginning with a keen understanding of today's biomolecule-related challenges, Waters scientists and engineers continuously seek purposeful innovations that help deliver impactful solutions in applications ranging from proteomics and biomarker discovery through the commercialization of advanced biopharmaceuticals. We continue to develop new, innovative columns and sample preparation consumables that support the HPLC, UHPLC, UHPLC, and LC-MS analyses of peptides, oligonucleotides, proteins, amino acids, and glycans.

Waters comprehensive chemistry and consumables family includes:

- Peptide columns for nano, capillary, analytical, and preparative peptide applications
- Protein size-exclusion, ion-exchange, hydrophobic-interaction, hydrophilic-interaction, and reversed-phase columns for analytical HPLC, UHPLC, UPLC, and lab-scale purification applications
- AccQ•Tag[™] Ultra Chemistry specific for Waters UPLC Amino Acid Analysis Solution, as well as Pico•Tag[™] and AccQ•Tag for HPLC-based amino acid analyses
- Oligonucleotide columns for synthetic oligonucleotide and DNA/RNA fragment isolations and analyses
- GlycoWorks[™] *Rapi*Fluor-MS[™] sample preparation kits and standards, and Waters Glycan Columns for the analysis of released glycans
- ACQUITY UPLC Glycoprotein BEH Amide, 300 Å Column for the analyses of intact glycoproteins, glycoprotein fragments, and glycopeptides
- Analytical Standards and Reagents consumables and kits for MS and LC-MS applications of peptides, proteins, and other biomolecules

In addition, our ACQUITY UPLC Protein BEH SEC, 125 Å, 200 Å, and 450 Å guards, columns, and quality controlled protein/peptide standards, as well as our ACQUITY UPLC Glycoprotein BEH Amide, 300 Å offering, were developed for use on ACQUITY UPLC Systems to help obtain accurate, precise, and highly resolving quantitative analysis of therapeutic proteins such as mAbs.

Designed and QC tested with relevant biomolecules to help ensure column-to-column consistency.

Bioseparations Columns www.waters.com/biosep

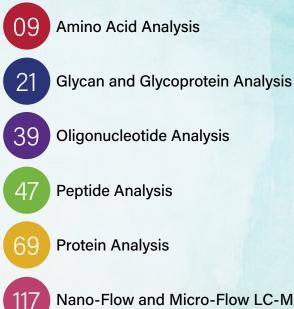
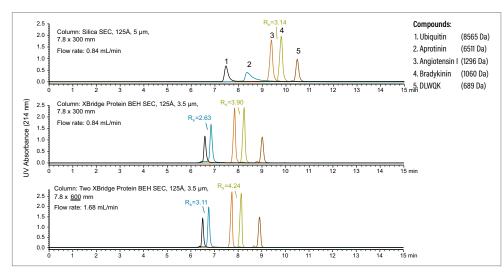

Bioseparations Analytical Standards and Reagents www.waters.com/biostds

Table of Contents

Factors to Consider when Investing and Using HPLC, UHPLC, or UPLC Columns for Bioseparations

2 Part 1: Column Selection and Installation 5 Part 2: Bioseparation Method Development

Nano-Flow and Micro-Flow LC-MS

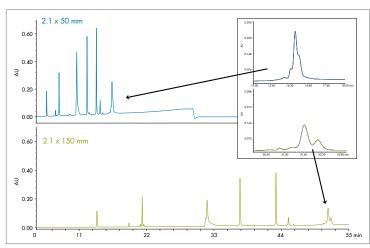

Factors to Consider when Investing and Using HPLC, UHPLC, or UPLC Columns for Bioseparations

Many factors can affect the quality of data obtained from LC-based separations of peptides, proteins, and other biomolecules. The following pages list just a few of the important factors to consider when selecting an appropriate HPLC, UHPLC, or UPLC column for analytical or lab-scale applications. Once an appropriate column is selected, time must be invested in developing a satisfactory separation, so we have also included a few useful method development "tips and tricks". We hope that these few examples will help chromatographers select a column and develop a method that matches their specific instrumentation and application needs.

PART 1: COLUMN SELECTION AND INSTALLATION

Effect of Particle Composition on SEC Peptide Separations

- Particle composition (e.g., silica, polymer, hybrid) influences desired LC separations
- These non-desired secondary interactions (i.e., ionic or hydrophobic) can be beneficial or detrimental
- Particle composition can also influence column life (e.g., silica-based at pH >7)

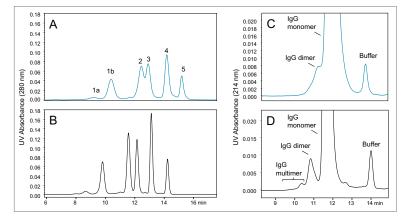


In the size-exclusion chromatographic (SEC) separation shown, a series of synthetic peptides are separated on a column containing 100% silica-based, diol-coated particles (top) vs. Waters diol-coated, bridged-ethylene hybrid (BEH Technology™) particles that have less-undesired-free silanols. Consequently, and as shown in this example, use of SEC columns that contain BEH particles results in comparatively less undesired secondary ionic interactions between the ubiquitin and aprotinin peaks and less peak tailing making quantitation of these peptides more reliable.

For more information, reference application note 720005369EN.

Effect of Column Length on Reversed-Phase Protein Separations

- Use of longer LC columns can translate into improved component resolution
- Analysis time increases as column length increases
- Separated peak volume increases as column length increases


Increasing the length of the column will increase the resolving power for a separation. This is shown with the separation of a protein mixture. The additional small peaks surrounding the Phosphorylase b can be seen more readily on the longer column, as seen in the inset, but it comes at the cost of a 3-fold increase in run time and ~40% loss of sensitivity. Depending on the application objective, this may be a useful parameter to improve resolution.

2

For more information, reference application note 720003875EN.

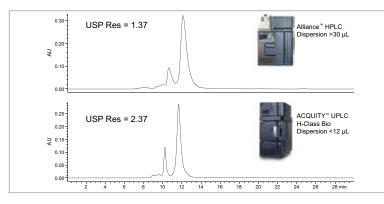
Effect of Particle Size on SEC Protein Separations

- Well-packed columns containing small particles can improve a separation
- System back pressure will increase as particle size decreases
- Consequently, LC instrumentation can limit potential column use

A comparison of separations of Waters BEH450 SEC Protein Standard Mix (p/n: 186006842) and Intact mAb Mass Check Standard (p/n: 186006552, diluted to 1 mg/mL) on 450 Å, silica-based 8 μ m (Frames A and C) and 450 Å, BEH 3.5 μ m (Frames B and D) SEC columns. Both columns were the same dimensions (7.8 x 300 mm) and separations were performed with the same flow rate (0.84 mL/min) and with the same sample loads. Peak identities for chromatograms A and B are: 1a) thyroglobulin dimer (1.3 MDa), 1b) thyroglobulin (669 KDa), 2) IgG (150 KDa), 3) BSA (67 KDa), 4) myoglobin (14 KDa), and uracil (112 Da). For the chromatograms in frames C and D the molecular weights of the IgG monomer, dimer, and multimer are approximately 150 Kda 300 KDa, and \geq 450 KDa, respectively.

i For more information, reference application note 720005202EN.

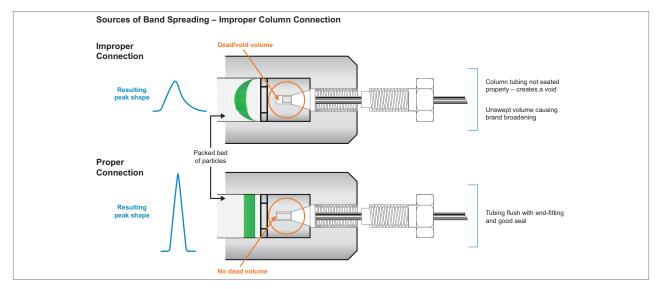
Choosing an Analytical Column that Best Matches LC-based Instrumentation


- Standard methods can be performed to measure system dispersion (band broadening)
- Different LC systems have different dispersion values (e.g., band broadening)
- Optimal chromatographic separations are obtained when the appropriate column (e.g., column I.D., particle size) and separation conditions (e.g., flow rate, temperature, gradient) are selected based on LC system design

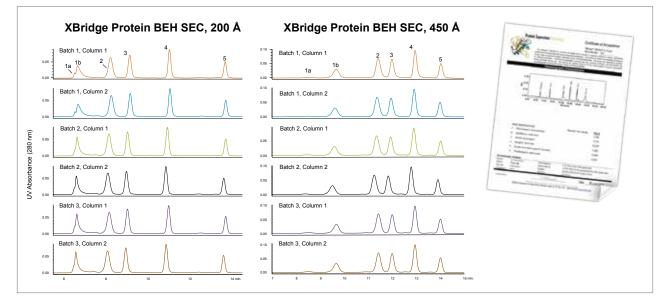
HPLC	UHPLC	UPLC
Dispersion >30 µL	Dispersion 12–30 µL	Dispersion <12 µL
Columns: 3.0–4.6 mm l.D.;	Columns: 2.1–4.6 mm l.D.;	Columns: 1.0–4.6 mm l.D.;
3–10 µm particles	1.7–5 µm particles	1.6–5 µm particles
Recommended column:	Recommended column:	Recommended column:
4.6 mm I.D., 5 µm particles	3.0 mm I.D., 2.5 µm particles	2.1 mm I.D., 1.7 µm particles
Typical operating pressure:	Typical operating pressure:	Typical operating pressure:
<6000 PSI	<10,000 PSI	<15,000 PSI

Dispersion – n. Broadening of an analyte band due to both on-column effects (diffusion and mass transfer kinetics which are both dependent on particle size and linear velocity) and system effects (tubing internal diameter [1.D.] and length, connections, detector flow cell volumes, etc.) True separation performance is governed by the system dispersion paired with a flow rate range that yields the highest possible efficiency for a given analytical column. Due to these dispersion levels, we can appropriately match the right type of column size (volume) with the system dispersion. UPLC, having a very low dispersion volume, provides the greatest flexibility in terms of the columns that can be run on the system.

Effect of LC System Dispersion on SEC Monoclonal Protein Separations


- LC Systems with lower system volumes better maintain column generated separations
- Isocratic-based SEC separations are most sensitive to deleterious band broadening effects

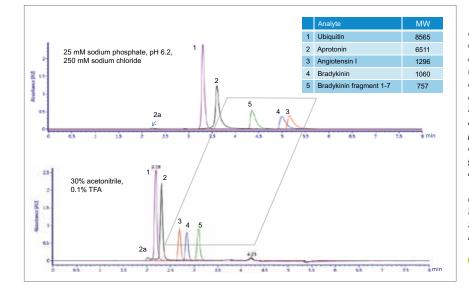
The extra system volume of the traditional HPLC System (top) caused the column separated peaks to "partially remix" resulting in a USP resolution factor of 1.37 vs. the superior 2.37 value obtained when the separation was performed on an ACQUITY UPLC System. This slide shows how the LC system's "band broadening" can adversely affect the quality of the mAb separation generated with the same XBridge" Protein BEH SEC, 200 Å, 2.5 µm Column, SEC eluent, and sample.


Importance of Making Good Connections from Column to LC System

- Poor column-to-instrument connections can degrade a chromatographic separation
- Perceived column leaking can also be caused by a poor connection

Importance of Batch-to-Batch and Column-to-Column Reproducibility

- Column reproducibility is a key attribute when selecting a column
- QC testing with relevant biological standards can help ensure consistency

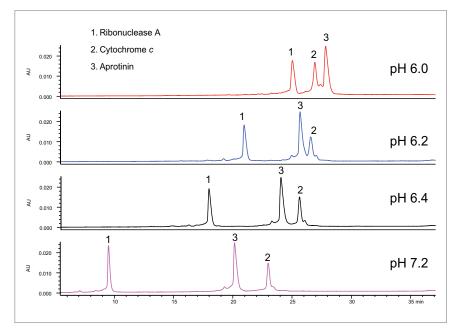

Shown are overlays of the separations of Waters BEH200 SEC Molecular Weight Standard (p/n: 186006518) on 200 Å and 450 Å BEH 3.5 µm SEC columns. Two columns (300 mm length x 7.8 mm l.D.) were packed from three individual manufactured batches of particles to evaluate both batch-to-batch and column-to-column reproducibility. Peak identities are: 1a) thyroglobulin dimer (1.34 MDa), 1b) thyroglobulin (669 KDa), 2) IgG (150 KDa), 3) BSA (67 KDa), 4) myoglobin (14 KDa), and 5) uracil (112 Da). Separations were performed on an ACQUITY UPLC H-Class Bio System.

4

PART 2: BIOSEPARATION METHOD DEVELOPMENT

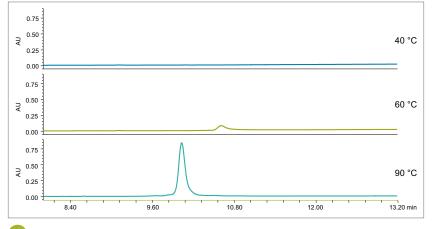
Eluent Effect on SEC Peptide Separations

- Non-desired, secondary interactions can compromise LC separations
- Use of an appropriate LC eluent can minimize secondary interactions



Method development experiments evaluated the effect of mobile-phase pH and salt concentration. The results showed minimal effect of salt concentrations (150-350 mM) and mobile-phase pH (6.2-7.4) on retention time (data not shown). All of the aqueous mobile phases resulted in later than expected elution for most small peptides and proteins (<17,000 Da) as well as elution order that did not correspond to published molecular weight values. For example, bradykinin fragment 1-7 (MW 757) eluted before greater molecular weight peptides such as angiotensin I (MW 1296) and bradykinin (MW 1060). These results also suggest the non-ideal interactions of the tested peptides with the media is not solely due to an "ion-exchange" mechanism since increasing salt concentration had no significant impact on retention time.

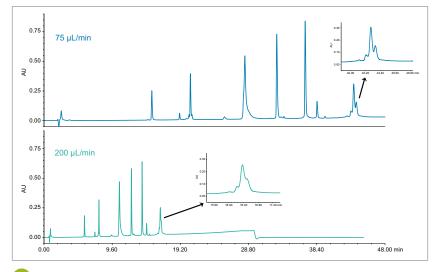
For more information, reference application note 720004412EN.


Effect of pH on Ion-Exchange Protein Separations

- pH has a significant influence on IEX separations
- Optimal pH for a separation is sample dependent

To illustrate the effect of buffer pH, a mixture of proteins was separated using weak cation-exchange chromatography at various pH values. At a pH of 6, different selectivity was observed for the most basic proteins vs. the separation at pH 6.2 and greater. At pH 6, ribonuclease A elutes before cytochrome c; this elution order is reversed when the separation was performed at pH 6.2 or greater, as shown in the figure. Sample: bovine, **a**-chymotryspinogen, bovine ribonucelase A, equine cyctochrome c. Column: Protein-Pak Hi Res CM 7 µm, 4.6 x 100 mm. Conditions: 20 mM buffer (MES or sodium phosphate) pH 6 to 7.2, 1 mL/min, 0 to 0.2 M NaCl in 34 minutes at 30 °C. **Temperature Effect on Reversed-Phase Protein Separations**

- Use of "room temperature" is NOT always the ideal separation temperature
- Use of a column heater is strongly recommended for reproducible analyses

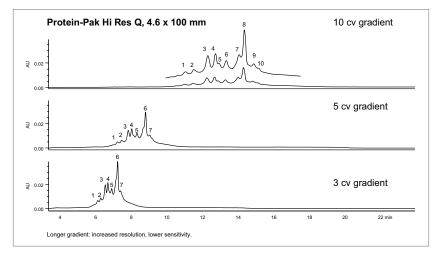


The intact IgG sample gave no observable peak at 40 °C, but recovery for the IgG sample improves with increasing temperature. There is not a measurable increase in recovery or improvement in peak shape above 80 °C. Column temperature has a large effect on reversedphase separation of molecules. Changes in recovery and selectivity are not uncommon with small molecule separations. While increasing the temperature for proteins can significantly improve recovery, particularly for intact monoclonal antibodies, it doesn't generally affect the selectivity of the separation. However, not all proteins require higher temperatures for improved recovery. In fact, some protein separations have more desirable results with lower separation temperatures. Therefore, it is recommended that an evaluation of temperature be included in any method development strategy for new samples.

For more information, reference application note 720003875EN.

Effect of Flow Rate on Reversed-Phase Protein Separations

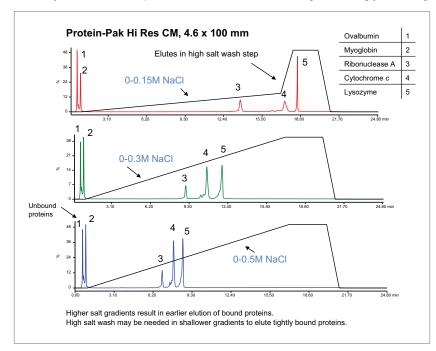
- Use of lower flows can translate into improved component resolution
- Analysis time will increase as flow rate increases
- Sample complexity can influence selected separation flow rate


without a compromise in the sensitivity, as seen in this separation of the protein mixture at 40 °C. The improved separation of the phosphorylase b sub-units can be seen (inset) at the lower flow rate. The run time of the analysis is increased proportionally to preserve the same gradient slope in both separations. Flow rate is seldom treated as an important parameter in method development except as an indirect modification of gradient slope. The impact of this variable is, however, more significant for larger molecules.

Decreasing the flow rate provides increased resolution

For more information, reference application note 720003875EN.

Effect of Gradient Duration of a Reversed-Phase Peptide Separation


- Use of longer gradient time can translate into improved component resolution
- Analysis time will increase using longer gradients as will peak volume
- Sample complexity can influence selected gradient duration

The use of salt gradients can also be used to analyze variants of a single protein. In this example, chicken albumin was analyzed by anion-exchange chromatography. Three different gradient slopes were employed to analyze the variants of albumin formed by post transitional modifications, such as methylation, phosphorylation, and glycolyslation. As can be observed in the chromatograms, the gradient slope can affect the number of variants detected, with shallower gradients reducing sensitivity but allowing for resolution of additional variants. Note: All gradients were performed at same flow rate from 0 to 0.5M NaCl at same buffer pH.

Effect of Gradient Slope on an IEX Protein Separation

- Gradients of differing salt concentration affect in IEX protein separations
- Selected start and final salt concentration based on sample composition
- Analysis time and component resolution increases using increasingly shallow gradients

Gradients of differing salt concentration are frequently used in IEX protein separations to optimize retention time, component resolution, and overall analysis time. In this example, a protein mix was analyzed using three different salt gradients but keeping the run time identical. The higher salt gradients shown on the bottom of the chromatogram increases the salt concentration from 0-0.5M NaCl, while the top chromatogram has a gradient which ends at 0.15M NaCl, with the middle chromatogram ending at 0.3M NaCl — note effect gradient has on separation. Flow rates same for all separations. Whether you are a lab manager, scientist, or purchasing agent in procurement, we make it easy for you to research, compare, and purchase consumables and spare parts online.

Amino Acid Analysis

Contents

Amino Acid Analysis	11
Accurate Amino Acid Analyses from Varied Sample Matrices	. 12
UPLC: AccQ-Tag Ultra Amino Acid Analysis Solution	.13
HPLC: AccQ-Tag Amino Acid Analysis Solution	17
HPLC: Pico-Tag Method	18

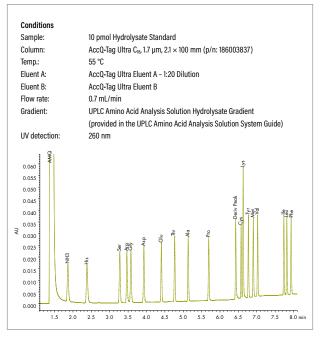
Amino Acid Analysis

Amino acids are the constituents of proteins and are the intermediates in many metabolic pathways. Qualitative and quantitative Amino Acid Analysis (AAA) is used to determine the concentration of proteins, identify proteins, and detect structural variants. Amino acid composition is a critical component of the nutritional value of foods and feeds. The same analytical tools are used to monitor cell culture and fermentation processes. AAA is also used as a clinical diagnostic tool for assessing inborn errors of metabolism and nutritional status.

The accurate identification and quantification of amino acids in biological research and in the development and commercialization of food, beverage, and biotherapeutic products is challenging. This set of analytes covers a wide range of chemical properties (e.g., acidic, basic, neutral), yet resolution of individual pairs having only minor structural differences is required. Analysis is further complicated by the absence of common chromophores, necessitating use of a derivatization chemistry to enable analyte detection.

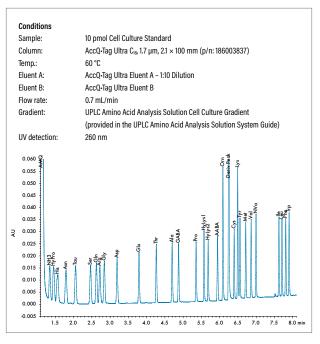
Reversed-phase chromatography provides good selectivity for separating amino acids. The most common approach to reversed-phase AAA includes pre-column derivatization. The derivatized amino acids retain better on the reversed-phase column and can be more easily separated. Most common derivatization reagents react with the amines. Some reagents react only with primary amines, but the most useful ones also react with secondary amines such that proline and hydroxyproline are also measured. In addition to improving chromatography, derivatization can make the amino acids readily detectable by UV absorbance or fluorescence.

For more than 50 years, Waters has provided reversed-phase chromatographic solutions that have successfully addressed a variety of organic compound analytical needs, including amino acid analysis. Hundreds of published papers have positively testified to the successful application of one of Waters pre-column amino acid derivatization chemistries that are used prior to the reversed-phase separation with on-line detection of resolved peaks using either UV absorbance or fluorescence. Waters offers three distinct methods that utilize pre-column derivatization and reversed-phase chromatography for accurate identification and quantitation of free or bound amino acids: Pico-Tag,™ AccQ-Tag,™ and AccQ-Tag Ultra.

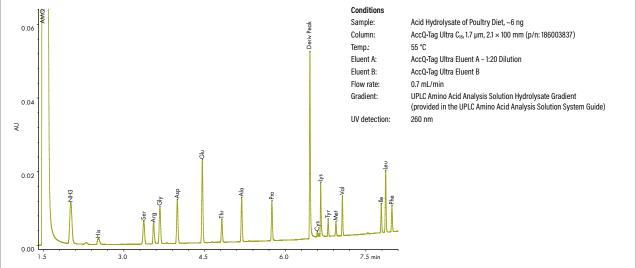


Pico-Tag Method	AccQ-Tag Method	AccQ-Tag Ultra Chemistry Package
1980's	1990's	2006
 Designed for use with HPLC systems Applicable to any sample including protein hydrolysates, physiologic fluids, feeds, foods, and pharmaceutical preparations Based on the coupling reaction of the well known Edman Degradation, the reaction of phenylisothiocyanate (PITC) with both primary and secondary amino acids to form phenylthiocarbamyl (PTC) derivatives 	 Designed for use with HPLC systems Suitable for protein and peptide identification and quantitation, monitoring cell culture media and nutritional content of food and feed Based on AccQ-Tag derivatization of primary and secondary amino acids in aqueous conditions QC tested for use on HPLC with fluorescence detection 	 Designed specifically for use with the UPLC Amino Acid Analysis Solution AccQ-Tag Ultra Chemistry Package is part of a complete solution that includes instrument, software, and support for amino acid analysis of protein hydrolysates, cell culture media, foods, and feeds Based on AccQ-Tag derivatization of primary and secondary amino acids in
 QC tested for use on HPLC with UV detection 		 aqueous conditions Reagents, columns, and eluents QC tested with an amino acid separation

ACCURATE AMINO ACID ANALYSES FROM VARIED SAMPLE MATRICES

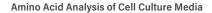

The UPLC Amino Acid Analysis Solution includes two complete methods using the same instrumentation and chemistries. The first is suitable for the amino acids derived from protein hydrolysates. The second is suitable for the larger number of free amino acids found in process samples such as cell culture or fermentation broths. The methods differ in the dilution of the AccQ-Tag Ultra Eluent A and the separation column temperature. There are no user adjustments of pH or modifications of composition for either Eluent A or Eluent B.

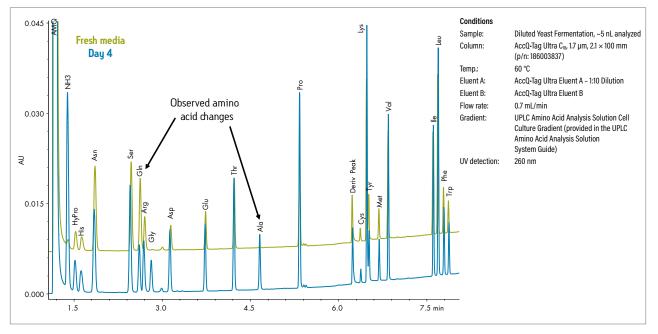
Hydrolysate Standard 10 pmol/µL



Separation of standard amino acids using the UPLC Amino Acid Analysis Solution Hydrolysate Method.

Cell Culture Standard 10 pmol/µL




Separation of the larger set of standard amino acids using the UPLC Amino Acid Analysis Solution Cell Culture Method. No modification of the mobile phase pH or composition is required.

Amino Acid Analysis of Hydrolyzed Poultry Diet

The 75 replicate analyses of a poultry diet mixed feed gives reproducible measurements of the weight percentage of the growth-limiting amino acids, typically 1% or better. The high sensitivity of the method ensures that only a very small aliquot of sample is required, thereby minimizing interferences.

Amino acid levels in a growing cell culture change over a relatively short period shown here as a decrease in glutamine accompanied by an increase in alanine. The supplied methods were used without modification and no sample prep beyond dilution was required.

UPLC: AccQ-Tag ULTRA AMINO ACID ANALYSIS SOLUTION

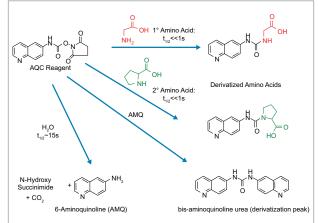
Waters' UPLC Amino Acid Analysis Application Solution is the product of over 25 years of experience in amino acid analysis, highlighted by the development and industry-wide acceptance of the innovative and proven Pico-Tag and AccQ-Tag chemistries. The UPLC Amino Acid Analysis Solution is holistically designed to offer a total application solution that is optimized for accurate, reliable, and reproducible analysis of amino acids. The solution leverages Waters experience in separation science, derivatization chemistries, and information management to ensure accurate and precise qualitative and quantitative results. Our solution also provides performance-qualified methodologies that are designed to be rugged and reliable, assuring reproducible results day-to-day, instrument-to-instrument, lab-to-lab, around the world—with the expert support that scientists have come to expect from Waters. Users can feel confident with assured performance in the areas of protein characterization, cell culture monitoring, and nutritional analysis of foods and feeds.

The UPLC Amino Acid Analysis Solution consists of:

- ACQUITY UPLC (binary), ACQUITY UPLC H-Class (quaternary), or ACQUITY UPLC H-Class Bio (quaternary)
 System with a tunable UV detector for enhanced chromatographic resolution and maximum-sensitivity detection
- AccQ+Tag Ultra derivatization chemistries including quality-controlled columns, reagents, and eluents
- Empower[™] 2 pre-configured projects, methods, and report templates
- Installation and application training and support
- Application-specific performance qualification
- Connections INSIGHT[™] ISDP instrument diagnostics to ensure continuous, consistent, and reliable operation
- Standards and kits to validate and troubleshoot

AccQ-Tag Ultra Chemistry

The AccQ-Tag Ultra chemistry is an integral component of the UPLC Amino Acid Analysis Application Solution. This application solution is an integrated combination of instrumentation, derivatization chemistry, separation column and eluents, methods and software. Analysts are assured of accurate and precise amino acid analyses with the complete application solution. The use of the AccQ-Tag Ultra chemistry without the rest of the application solution is not supported as an Amino Acid Analysis method.

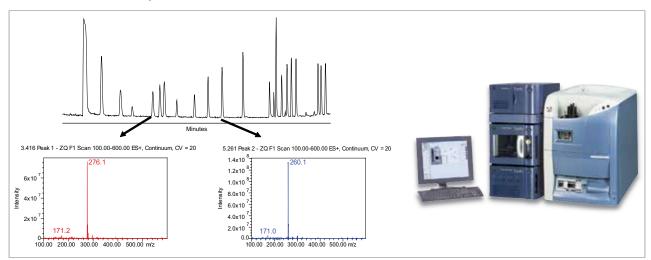

AccQ-Tag Ultra chemistry is different from the AccQ-Tag HPLC method described later in this chapter. Although the components of the two derivatization kits are the same, the QC tests are based on the specific separation and detection protocols. Both methods begin with the same derivatization chemistry but differ in all the other details such that components cannot be interchanged. Most importantly, the AccQ-Tag Ultra column has completely different chemistry from the AccQ-Tag Column. The AccQ-Tag Ultra Column leverages Waters 1.7 µm hybrid-silica BEH Technology particles that deliver the excellent column efficiency and resolution. The column also includes eCord™ Intelligent Chip Technology that is permanently attached to the column to easily track its history. The mobile phases in the AccQ-Tag Ultra chemistry are different from those used for the AccQ-Tag HPLC method, each being optimized for the specific column and detection technique.

Compared to traditional HPLC methods, the UPLC Amino Acid Analysis Solution results in peaks that are much sharper and better resolved. This improved resolution results in a rugged method where there is no ambiguity in peak identification and it simplifies quantitation. The better resolution provides a precise, reliable method. The dramatically higher throughput (3 to 5 times faster) with UPLC Technology enables users to make more informed decisions faster and to perform more analyses per day.

AccQ-Tag Derivatization Reaction

- Utilizes AccQ•Tag Ultra Reagent Powder
 - 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC)
 - US Patent #5,296,599 and European Patent #EP 0 533 200 B1
- AQC reacts rapidly with both primary and secondary amines
- Excess reagent reacts more slowly with water to form 6-aminoquinoline (AMQ)
- AMQ reacts slowly with excess AQC reagent to form a bisurea
- Derivatized amino acids are separated chromatographically from the byproducts
- Requires no vacuum drying, sample prep, or extraction

Chemistry of the AccQ-Tag Derivatization Reaction



14

MS Compatible

The UPLC Amino Acid Analysis Application Solution is directly compatible with electrospray mass spectrometry. No adjustment is required to have an MS TIC that exactly matches the UV trace. MS is extremely useful for any samples that may have an extra, unknown, or unexpected peak, since the identification of amino acids can be confirmed by their molecular weight. Although MS is not required for routine peak identification and does not provide additional useful sensitivity, the use of MS-compatible mobile phases makes using MS detection simple.

Direct Flow into Source at 700 µL/min

The UPLC Amino Acid Analysis Application Solution is directly compatible with electrospray mass spectrometry.

Amino Acid Molecular Weights and m/z Values

Amino Acid	Molecular Weight	m/z	Amino Acid	Molecular Weight	m/z
Alanine	89.09	260.2	Leucine	131.2	302.2
Alpha amino butyric acid	103.1	274.2	 Lysine	146.2	244.1
Arginine	174.2	345.2	 Methionine	149.2	320.2
Asparagine	132.1	303.2	 Norvaline	117.1	288.1
Aspartic acid	133.1	304.2	 Phenylalanine	165.2	336.2
Beta amino butyric acid	103.1	274.2	 Proline	115.4	286.2
Cystine	240.3	291	 Serine	105.1	276.2
Glutamic acid	147.1	318.1	 Taurine	125.1	296.1
Glutamine	146.14	317.2	 Threonine	119.1	290.2
Glycine	75.07	246.2	 Tryptophan	204.2	375.2
Histidine	155.2	326.2	 Tyrosine	181.2	352.2
Hydroxy-L-Proline	131.1	302.2	 Valine	117.2	288.2
Isoleucine	131.2	302.2			

*m/z was calculated by adding the mass of the AccQ-Tag label (171 Da).

Amino Acid Standard

Amino acid analysis is required in many applications in the pharmaceutical and food and feed industries. A variety of standards containing unlabeled amino acids are offered for qualitative and quantitative determination of amino acids, method development, and troubleshooting with the AccQ•Tag Ultra, AccQ•Tag, or Pico•Tag methods. Internal standard Norvaline provides improved accuracy during sample hydrolysis, derivatization, and analysis.

Ordering Information

Amino Acid Standard

Description	P/N
Amino Acid Standard 10 x 1 mL ampules of unlabeled amino acid standards (2500 µM)	WAT088122
Amino Acid Cell Culture Standard Kit 2 vials containing 17 amino acids (1000 μM when reconstituted in 1.1 mL) 8 vials containing 9 cell culture supplemental amino acids (1000 μM when reconstituted in 250 μL)	186009300
Amino Acid Food and Feed Standard Kit 2 vials containing 17 amino acids (1000 μM when reconstitute in 1.1 mL) 8 vials containing 4 food and feed supplemental amino acids (1000 μM when reconstituted in 250 μL)	186009299
Amino Acid Internal Standard-Norvaline 625 μM in 2 mL	186009301

List of Amino Acids Contained in Each Standard

Amino Acid	Amino Acid Standard	Cell Culture Standard kit	Food & Feed Standard Kit	Internal Standard
	P/N WAT088122	P/N 186009300	P/N 186009299	P/N 186009301
Alanine	х	х	x	
Arginine	х	х	x	
Aspartic acid	x	х	x	
Cystine	х	х	x	
Glutamic acid	х	х	x	
Glycine	х	х	x	
Histidine	х	x	X	
Isoleucine	х	x	X	
Leucine	х	x	X	
Lysine	х	х	X	
Methionine	x	х	x	
Phenylalanine	х	х	X	
Proline	x	x	x	
Serine	x	x	X	
Threonine	x	x	x	
Tyrosine	x	x	X	
Valine	x	x	X	
Taurine		х	X	
HydroxyProline		х		
Asparagine		x		
Glutamine		x		
GABA -Aminobutyric acid)		x		
Tryptophan		х		
Ornithine		х		
AABA -Aminobutyric acid		х	х	
HydroxyLysine		х		
Methionine sulfone			x	
Cysteic acid			X	
Norvaline				x

Ordering Information

AccQ-Tag Ultra Amino Acid Analysis Kits and Accessories

Description	Qty.	P/N
ACQUITY UPLC AAA Application Kit		176001279
This Kit is intended to enable existing ACQUITY UPLC Systems for AAA applications.		
Kit contains:		
Amino acid standard, hydrolysate	10 × 1 mL	
Sample tubes	4×72/pk	
Total recovery vials with caps	3×100/pk	
Column stabilizer kit, 150 mm		
AccQ-Tag Ultra Derivatization Kit		
AccQ-Tag Ultra C_{18}, 1.7 $\mu m, 2.1 \times 100 \ mm$ Column		
AccQ-Tag Ultra Eluent A, concentrate	950 mL	
AccQ•Tag Ultra Eluent B	950 mL	
Tube inlet .0025 I.D. PEEK nut PDA assembly		
2 µL Sample loop		
Column In-line filter kit		
UPLC AAA solution information set		
UPLC AAA application solution startup tests		
Cert. AAA application and familiarization		
UPLC AAA H-Class Applications Kit		176002983
This kit is intended to enable existing ACQUITY UPLC H-Class Systems for AAA applications.		
Kit contains:		
AccQ•Tag Ultra Derivatization Kit, 250 analyses		
AccQ-Tag Ultra C_{18}, 1.7 $\mu m,$ 2.1 \times 100 mm Column		
AccQ•Tag Ultra Eluent A, concentrate	950 mL	
AccQ•Tag Ultra Eluent B	950 mL	
Amino acid standard, hydrolysate	10 × 1 mL	
Total recovery vials	3×100/pk	
Tube inlet 0.0025 I.D. PEEK nut PDA assembly		
Column In-line filter kit		
UPLC AAA H-Class solution information set		
AAA application and familiarization service		
AccQ-Tag Ultra Chemistry Kit		176001235
The refill kit is intended to recharge the AccQ-Tag I of the application kit. This kit should be purchased purchased the AccQ-Tag Ultra Application Solution ACQUITY UPLC and ACQUITY UPLC H-Class AAA Ap not be purchased as part of an initial system.	l by those that hav n. This kit is applic	e already able to both
Kit contains:		
AccQ-Tag Ultra Derivatization Kit, 250 analyses		
AccQ-Tag Ultra C $_{18}, 1.7\mu\text{m}, 2.1 \times 100\text{mm}$ Column		
AccO.Tag Ultra Eluent A concentrate	950 ml	

AccQ-Tag Ultra Eluent A, concentrate	950 mL
AccQ-Tag Ultra Eluent B	950 mL
Amino acid standard, hydrolysate	10 × 1 mL
Sample tubes	4 × 72/pk
Total recovery vials with caps	3×100/pk

Description	Qty.	P/N
AccQ-Tag Ultra Derivatization Kit, 250 analyses		186003836
AccQ-Tag Ultra Borate Buffer	$5 \times 6 \text{mL}$	
AccQ-Tag Ultra Derivatization Reagent Powder	$5 \times 3 \text{ mg}$	
AccQ-Tag Ultra Reagent Diluent	$5 \times 4 \text{mL}$	
Amino Acid Standard, Hydrolysate	$10 \times 1 \text{mL}$	WAT088122
A standard mixture containing 18 amino acids (17 hydrolysate amino acids each at 2.5 mM and cystine at 1.25 mM)		
Sample Tubes	4×72/pk	WAT007571
Total Recovery Vials with Caps	3×100/pk	186000384C
AccQ-Tag Ultra C_{18}, 1.7 $\mu m, 2.1 \times 100 \ mm$ Column		186003837
AccQ-Tag Ultra Eluent A, concentrate	950 mL	186003838
AccQ-Tag Ultra Eluent B	950 mL	186003839

AccQ-Tag Ultra Amino Acid Analysis Kits and Accessories - Automation

Description	Qty.	P/N
AccQ-Tag Ultra Chemistry Script Starter Kit - Automation		176004533
AAA Automation Script Pack - CD		
AccQ-Tag Ultra Chemistry Kit - Automation		
AccQ-Tag Ultra Chemistry Kit - Automation		176004534
Kit contains:		
AccQ-Tag Ultra Derivatization Kit - Automation, 96 analyses		
AccQ-Tag Ultra C $_{18}, 1.7\mu\text{m}, 2.1\times100~\text{mm}$ Column		
AccQ-Tag Ultra Eluent A, concentrate	950 mL	
AccQ-Tag Ultra Eluent B	950 mL	
Amino acid standard, hydrolysate/cell culture/ food and feed	1 option	
Sample tubes	4 × 72/pk	
Total recovery vials with caps	3×100/pk	
AccQ-Tag Ultra Derivatization Kit - Automation, 96 analyses		186009232
AccQ•Tag Ultra Borate Buffer	3 × 10 mL	
AccQ-Tag Ultra Derivatization Reagent Powder	3 × 3 mg	
AccQ-Tag Ultra Reagent Diluent	$3 \times 4 \text{mL}$	
AccQ-Tag Borate Buffer	10 mL	186009283

HPLC: AccQ-Tag AMINO ACID ANALYSIS SOLUTION

The HPLC AccQ-Tag Method utilizes the same precolumn derivatization step as the AccQ-Tag Ultra Method. The AccQ.Fluor™ Reagent, 6-aminoquinolyI-Nhydroxysuccinimidyl carbamate (AQC), derivatizes primary and secondary amines in a simple, single-step reaction to yield highly stable, fluorescent adducts. We offer the AccQ-Tag Method as a system package consisting of pre-packaged reagents and extensive documentation.

The AccQ-Tag chemistry package contains the items you need for up to 250 analyses of protein and peptide hydrolysate amino acids.

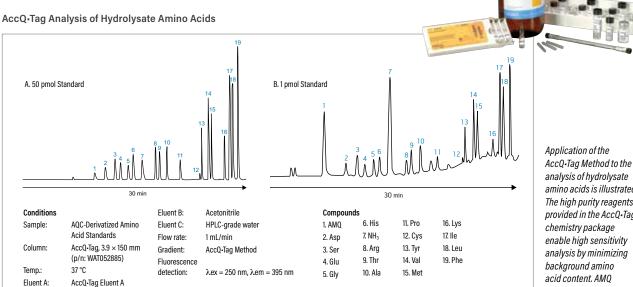
AccQ-Tag Derivatization Kit

The AccQ-Tag Derivatization Kit contains five sets of the derivatizing reagents. Each set of reagents includes one vial each of:

- AccQ.Fluor Borate Buffer The buffer is added to the samples to ensure the optimum pH for derivatization.
- AccQ-Fluor Reagent Powder The reagent powder is the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatizing reagent. It is shipped dry for maximum stability.
- AccQ.Fluor Reagent Diluent This diluent, acetonitrile, is used reconstitute the reagent for derivatization.

AccQ-Tag Amino Acid Analysis Column

The AccQ-Tag Column is a high-efficiency HPLC column specifically certified for use with the AccQ-Tag Method. This column separates the amino acid derivatives produced by the AccQ-Fluor derivatization reaction.

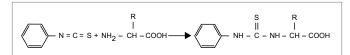

Ordering Information

AccQ-Tag Amino Acid Analysis Kits and Accessories for HPLC and UHPLC AAA Analysis

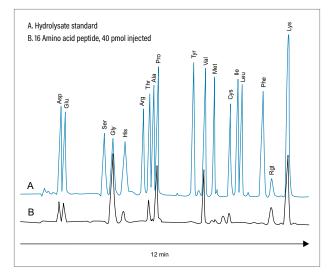
Description	Qty.	P/N
AccQ•Tag Chemistry Kit		WAT052875
Kit is for up to 250 analyses and contains: AccQ•Fluor Reagent 1	5 × 6 mL	
AccQ•Fluor Reagent 2A	$5 \times 3 \text{ mg}$	
AccQ-Fluor Reagent 2B	$5 \times 3 \text{mL}$	
AccQ•Tag Column, 3.9 × 150 mm		
AccQ-Tag Eluent A, concentrate	2×1L	
Sample tubes	4×72/pk	
Amino acid standard, hydrolysate	$10 \times 1 \text{mL}$	
AccQ-Tag User Guide		
Amino Acid Standard, Hydrolysate	10 × 1 mL	WAT088122

A standard mixture containing 18 amino acids (17 hydrolysate amino acids each at 2.5 mM and cystine at 1.25 mM).

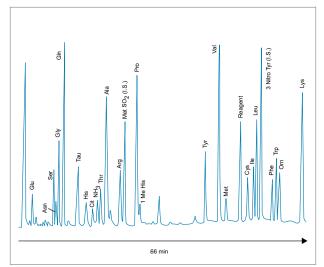
AccQ-Tag Eluent A	1L	WAT052890
Concentrate		
AccQ-Tag Eluent B	1L	WAT052895
AccQ-Fluor Reagent Kit		WAT052880
Kit contains: AccQ•Fluor Reagent 1	5 × 6 mL	
AccQ-Fluor Reagent 2A	5 × 3 mg	
AccQ-Fluor Reagent 2B	$5 \times 4 \text{ mL}$	
The components of this kit are not available separately		
AccQ-Tag Column, 3.9 × 150 mm		WAT052885
AccQ-Tag User Guide		WAT052874



analysis of hydrolysate amino acids is illustrated. The high purity reagents provided in the AccQ-Tag chemistry package enable high sensitivity analysis by minimizing background amino (6-aminoquinoline).


HPLC: Pico-Tag METHOD

Waters Pico-Tag Method is a widely-used technique for HPLC amino acid analysis. This method is applicable to any sample including protein hydrolysates, physiologic fluids, feeds, foods, and pharmaceutical preparations. Pre-column derivatization relies on the coupling reaction of the well-known Edman Degradation, the reaction of phenylisothiocyanate (PITC) with both primary and secondary amino acids to form phenylthiocarbamyl (PTC) derivatives. The PTC-amino acid adducts are stable and easily separated by reversed-phase HPLC. A single product is formed for each amino acid. Most reaction by-products and all derivatization reagents are volatile, so they may be removed from the sample by vacuum drying.


Pico-Tag Derivatization Reaction

Peptide Hydrolysate Amino Acid Analysis Using the Pico-Tag Method

This 12-minute analysis using Waters Pico-Tag Amino Acid Analysis Method provides identification and accurate quantitation of the amino acid composition.

Reproducible and reliable plasma amino acid profiles are obtained in 66 minutes using Waters Pico-Tag Method. In this analysis, 100 µL plasma was diluted with an internal standard, deproteinized by centrifugal ultrafiltration, and derivatized. The methionine sulfone (internal standard) peak represents 25 picomoles. Courtesy of A.S. Feste, R.W. Drummond, and S.J. Dudrich, Nutritional Support Service, St. Luke Episcopal Hospital, Houston, Texas.

Plasma Amino Acid Profile Using the Pico-Tag Method

Ordering Information

Pico-Tag Amino Acid Analysis of Physiologic Amino Acids


Description	Qty.	P/N
Chemistry Package for Amino Acid Analysis of Physiologic Amino Acids		WAT091681
Kit contains: Free Amino Acid Analysis Column, 3.9 × 300 mm		
Pico-Tag Reagent Kit		
Pico-Tag Eluent 1	4×1L	
Pico•Tag Eluent 2	4×1L	
Pico-Tag Diluent	100 mL	
Manual, column heater inserts, and sample tubes		
Pico-Tag Reagent Kit (PITC, TEA, and standards A/N and B)		WAT010947
Amino Acid Analysis Column, 3.9 × 300 mm		WAT010950
Pico-Tag Eluent 1	4×1L	WAT010960
Pico-Tag Eluent 2	4×1L	WAT010965
Pico-Tag Diluent	100 mL	WAT088119
Pico-Tag Eluent 2	1L	WAT010985

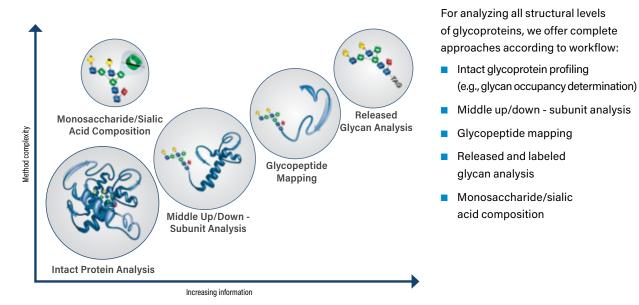
Pico-Tag Amino Acid Analysis for Protein Hydrolysates

Description	Qty.	P/N
Chemistry Package for Amino Acid Analysis of Protein Hydrolysates		WAT007360
Kit contains: Pico-Tag Column, 3.9 × 150 mm		
Pico-Tag Reagent Kit (includes PITC, TEA, and standards)		
Pico-Tag Eluent A	4×1L	
Pico-Tag Eluent B	4×1L	
Pico-Tag Diluent	100 mL	
Manual, column heater inserts, and sample tubes		
Pico-Tag Column, 3.9 × 150 mm		WAT088131
Pico-Tag Reagent Kit (PITC, TEA, and standards)		WAT088123
Pico-Tag Eluent A	4×1L	WAT088108
Pico-Tag Eluent B	4×1L	WAT088112
Pico-Tag Diluent	100 mL	WAT088119
Pico-Tag Eluent B	1L	WAT010983

20

Glycan and Glycoprotein Analysis

Contents


Glycan and Glycoprotein Analysis
Consolidating Complementary Techniques to Streamline Glycan Analysis
Intact Glycoprotein Analysis
Glycoprotein Subunit Analysis
Glycopeptide Analysis
Glycoprotein Performance Test Standard
Released N-Glycan Analysis
GlycoWorks RapiFluor-MS Released N-Glycans Sample Preparation
Glycan Performance Test Standards and Dextran Calibration Ladders
GlycoWorks Analytical Professional Services
Monosaccharide and Sialic Acid Analysis from Glycoproteins

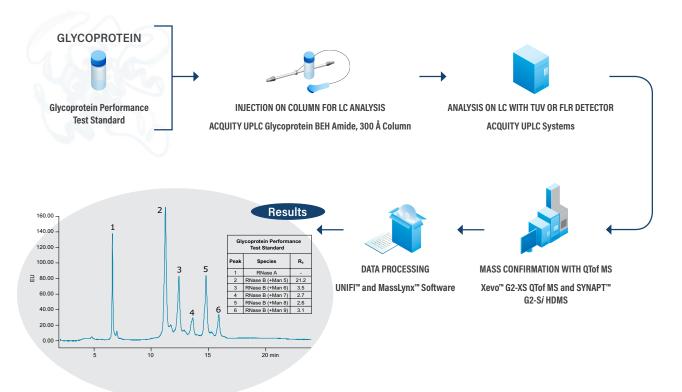
Glycan and Glycoprotein Analysis

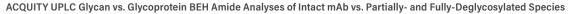
More than two thirds of recombinant biopharmaceutical products on the market are glycoproteins, and nearly every stage of their manufacture is carefully monitored and regulated to ensure consistency in quality, safety, and effectiveness. Consequently, international regulatory agencies require use of state-of-theart glycan analyses methods to help ensure the successful development and commercialization of effective and safe glycosylated biotherapeutics. To address this need, Waters offers a variety of robust, reproducible, complementary, information-rich analytical methods for this application.

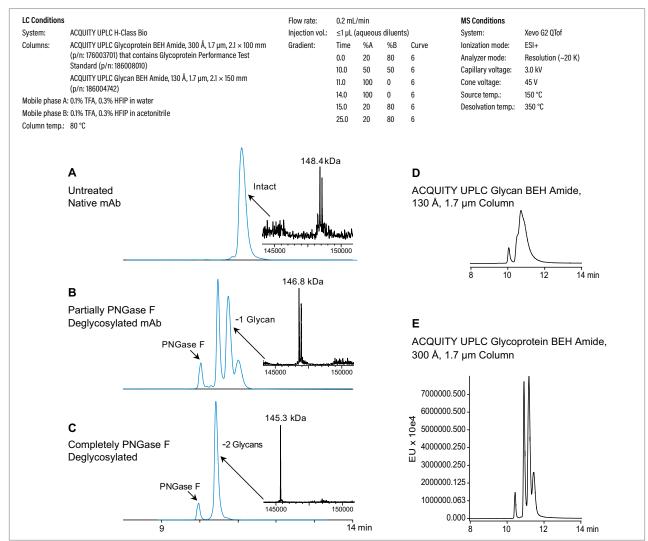
CONSOLIDATING COMPLEMENTARY TECHNIQUES TO STREAMLINE GLYCAN ANALYSIS

Glycoprotein and Glycopeptide Analysis

Intact glycoprotein profiling, subunit analysis, and glycopeptide mapping are means of characterizing protein glycosylation and are valuable orthogonal methods that provide accurate mass confirmation, glycan identification, and elucidate sites of glycan occupancy. Waters ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm Column is a powerful, single column chemistry that can run multiple complimentary, glycoprotein analyses methods.


- Optimized, large-pore, HILIC stationary phase for resolving the glycoforms of intact and digested glycoproteins
- Unprecedented separation selectivity and orthogonality to reversed phase
- High resolution glycopeptide mapping without limitations due to peptide/glycan size or composition
- Improved resolution in separations of large, released N-glycans (EPO, Factor IX)


INTACT GLYCOPROTEIN ANALYSIS


Waters ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm Column separates individual intact protein glycoforms as well as delivers information about glycan occupancy. Using elevated 80 °C column temperature, TFA ion pairing, and an HFIP mobile-phase additive, one is able to successfully enhance the solubility of 150,000 Dalton, Intact IgGs for this HILIC-based separation that uses an initial high organic solvent concentration. The figure on the next page shows the HILIC fluorescence chromatograms resulting from a separation of a native Intact mAb Mass Check Standard (a murine IgG1 mAb) and its partially as well as completely deglycosylated isoforms.

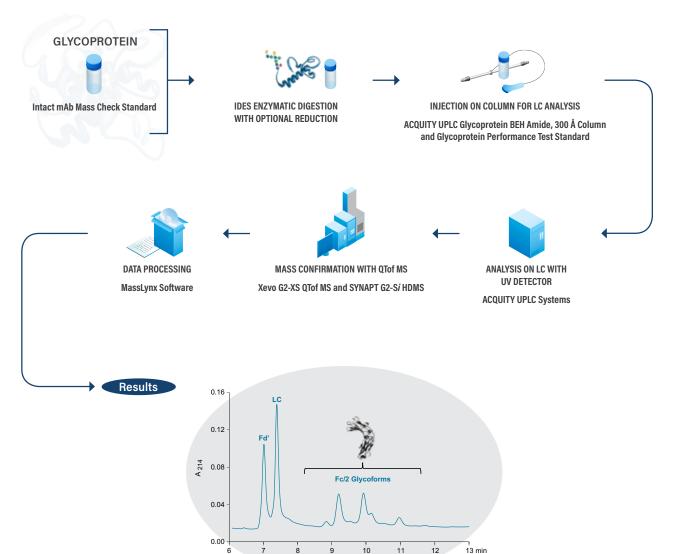
- Measure glycan occupancy of an intact therapeutic mAb
- Relative abundance of aglycosylated forms (-2 and -1 N glycans moetites) can be monitored by fluorescence
- Wide-pore phase facilitates the development of previously unimagined separations that includes an orthogonal separation of mAb fragments compared to well-established, reversed-phase chromatography

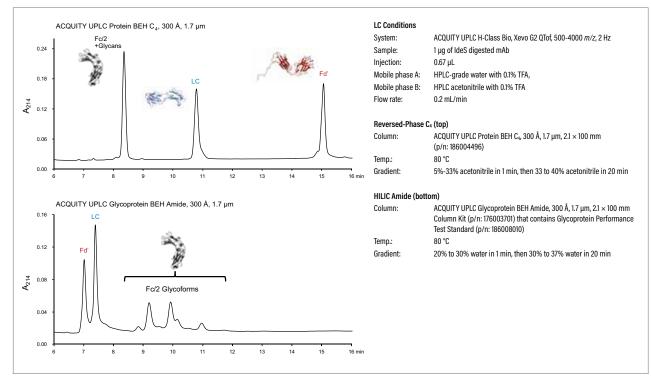
Intact Protein Analysis Workflow

Glycoprotein BEH Amide, 300 Å, 1.7 µm Column analyses of Waters mAb Mass Check Standard showing native (A), partially deglycosylated (B), and completely deglycosylated (C) samples. Also showing HILIC fluorescence profiles of partially deglycosylated Intact mAb Mass Check Standard using two ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 µm, 2.1 × 150 mm Columns in series (D) versus two ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm, 2.1 × 150 mm Columns in series (E).

Ordering Information

ACQUITY UPLC Glycoprotein BEH Amide Columns, Kits, and Standards


Description	P/N
ACQUITY UPLC Glycoprotein BEH Amide Column, 300 Å, 1.7 $\mu m,$ 2.1 \times 50 mm, 1/pk with Standard	176003700
ACQUITY UPLC Glycoprotein BEH Amide Column, 300 Å, 1.7 $\mu m, 2.1 \times 100$ mm, 1/pk with Standard	176003701
ACQUITY UPLC Glycoprotein BEH Amide Column, 300 Å, 1.7 $\mu m, 2.1 \times 150$ mm, 1/pk with Standard	176003702
ACQUITY UPLC Glycoprotein BEH Amide VanGuard Pre-Column, 300 Å, 1.7 μ m, 2.1 $ imes$ 5 mm, 3/pk with Standard	176003699
ACQUITY UPLC Glycoprotein BEH Amide Method Validation Kit, 300 Å, 1.7 μm, 2.1 × 100 mm, 3/pk with Standard	176003703
Glycoprotein Performance Test Standard	186008010
Intact mAb Mass Check Standard	186006552

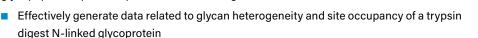

GLYCOPROTEIN SUBUNIT ANALYSIS

Reversed-phase chromatography is a well-established and commonly used technique to analyze intact protein of protein subunits generated from digestions with enzymes such as FabRICATOR (IdeS protease) that generates a site cleavage at the hinge region of a monoclonal antibody generating Fc and F(ab')2 fragments (www.genovis.com).

- soise Care
- Provides orthogonal and complementary results, compared to C₄-based reversed-phase separations for glycoprotein subunits

Trastuzumab subunit separations. Top: 1 µg of reduced IdeS digest separated using an ACQUITY UPLC Protein BEH C4, 300 Å, 1.7 µm Column (0.7 µL aqueous injection). Bottom: 1 µg of reduced IdeS digest separated using an ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm Column (0.7 µL aqueous injection).

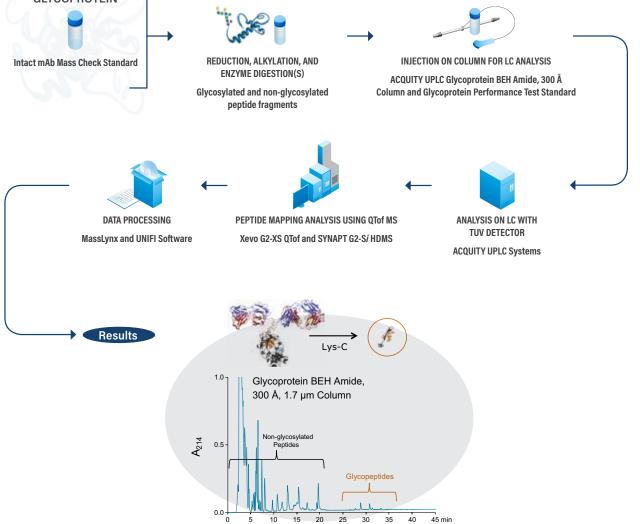
Ordering Information


ACQUITY UPLC Glycoprotein BEH Amide Columns, Kits, and Standards

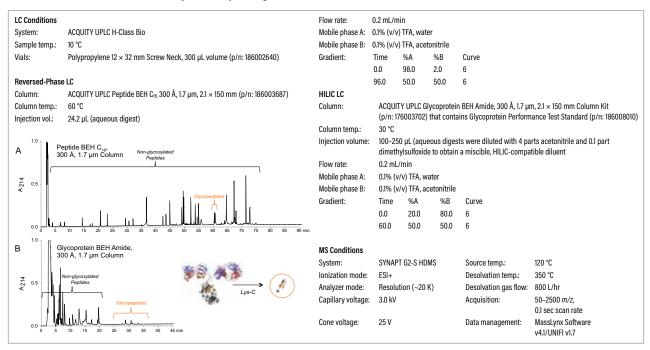
Description	P/N
ACQUITY UPLC Glycoprotein BEH Amide Column, 300 Å, 1.7 μm, 2.1 × 50 mm, 1/pk with Standard	176003700
ACQUITY UPLC Glycoprotein BEH Amide Column, 300 Å, 1.7 μ m, 2.1 \times 100 mm, 1/pk with Standard	176003701
ACQUITY UPLC Glycoprotein BEH Amide Column, 300 Å, 1.7 μm, 2.1 × 150 mm, 1/pk with Standard	176003702
ACQUITY UPLC Glycoprotein BEH Amide VanGuard Pre-Column, 300 Å, 1.7 μm , 2.1 \times 5 mm, 3/pk with Standard	176003699
ACQUITY UPLC Glycoprotein BEH Amide Method Validation Kit, 300 Å, 1.7 μm, 2.1 × 100 mm, 3/pk with Standard	176003703
Glycoprotein Performance Test Standard	186008010
Intact mAb Mass Check Standard	186006552


GLYCOPEPTIDE ANALYSIS

Glycopeptide Mapping Workflow

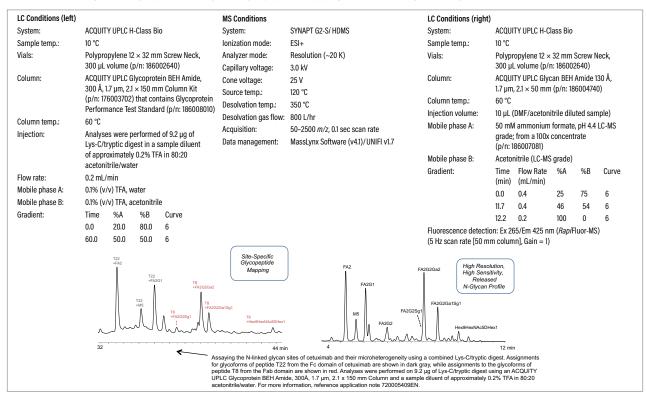

While reversed-phase, UPLC-based separations can resolve glycosylated peptides into their glycoforms, the complete resolution of glycopeptide micro-heterogeneity (same peptide sequence, various glycoforms) remains difficult. This is because retention in RP-LC is mainly due to peptide hydrophobicity, and is less affected by the presence of hydrophilic glycans. The separation is further complicated by the presence of non-glycosylated peptides in the sample that often elute in the vicinity of the glycopeptides of interest. HILIC-based glycopeptide separation provides the following benefits:

 Useful for the characterization of O-linked glycans because of the lack of specific and efficient enzymes for their release and characterization of O-linked glycoproteins



GLYCOPROTEIN

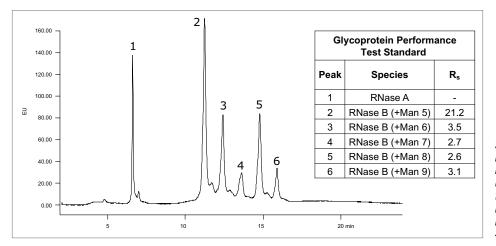
28


Reversed-Phase vs. HILIC-Based Analyses of a Lys-C Digest of Trastuzumab

A traditional reversed-phase separation of the Lys-C digest using an ACQUITY UPLC Peptide BEH C₁₈, 300 Å, 1.7 µm, 2.1 × 150 mm Column (top) vs. a HILIC separation of the Lys-C digest using an ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm, 2.1 × 150 mm Column (bottom). In each analysis, 9.2 µg of the Lys-C digest was separated using the same gradient slope and injecting sample from a diluent comprised of either approximately 0.2% TFA in 80:20 acetonitrile/water (HILIC) or 100% water (reversed phase).

For more information, reference application note 720005409EN.

Two Parallel Strategies for Glycoprotein Analyses: Glycopeptide Mapping vs. Released Glycan Analysis


HILIC Profiling of cetuximab glycosylation. HILIC-fluorescence chromatograms of RapiFluor-MS[™] labeled N-glycans from cetuximab obtained using an ACQUITY UPLC Glycan BEH Amide, 300 Å, 1.7 µm, 2.1 × 50 mm Column. Mass spectral data supporting the assignments of the RapiFluor-MS labeled N-glycans are provided.

For more information, reference application note 720005385EN.

GLYCOPROTEIN PERFORMANCE TEST STANDARD

Benchmarking, Method Development, and Troubleshooting

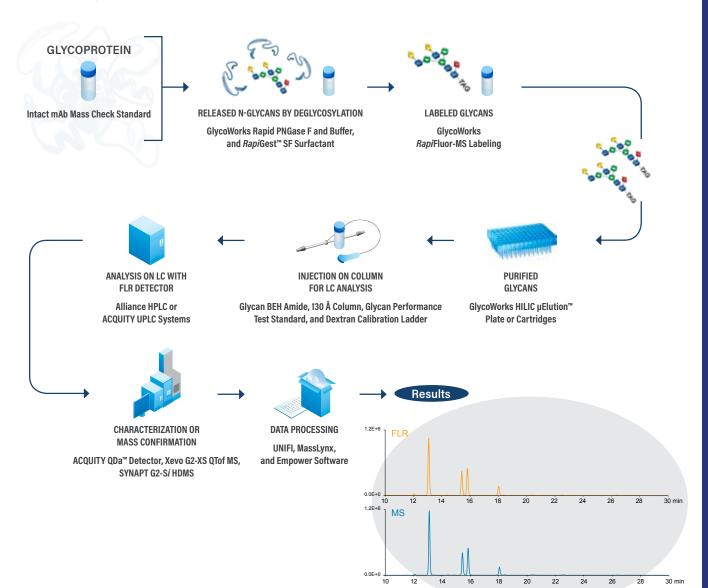
Glycoprotein Performance Test Standard is a mix of ribonuclease B from bovine pancreas at 90 μ g/vial with ribonuclease A from bovine pancreas at 10 μ g/vial used to quality control the ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 μ m Column, and is recommended to be used on a regular basis for benchmarking and monitoring column and system performance and lifetime.

Separation of the Glycoprotein Performance Test Standard (RNase A + RNase B glycoforms) using an ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm, 2.1 × 150 mm Column. Fluorescence detection at Ex 280 nm and Em 320 nm and a column temperature of 45 °C were employed in this example.

Ordering Information

ACQUITY UPLC Glycoprotein BEH Amide Columns, Kits, and Standards

Description	P/N
ACQUITY UPLC Glycoprotein BEH Amide Column, 300 Å, 1.7 $\mu m,$ 2.1 \times 50 mm, 1/pk with Standard	176003700
ACQUITY UPLC Glycoprotein BEH Amide Column, 300 Å, 1.7 $\mu m,$ 2.1 \times 100 mm, 1/pk with Standard	176003701
ACQUITY UPLC Glycoprotein BEH Amide Column, 300 Å, 1.7 $\mu m,$ 2.1 \times 150 mm, 1/pk with Standard	176003702
ACQUITY UPLC Glycoprotein BEH Amide VanGuard Pre-column, 300 Å, 1.7 μ m, 2.1 $ imes$ 5 mm, 3/pk with Standard	176003699
ACQUITY UPLC Glycoprotein BEH Amide Method Validation Kit, 300 Å, 1.7 μm, 2.1 × 100 mm, 3/pk with Standard	176003703
Glycoprotein Performance Test Standard	186008010
Intact mAb Mass Check Standard	186006552

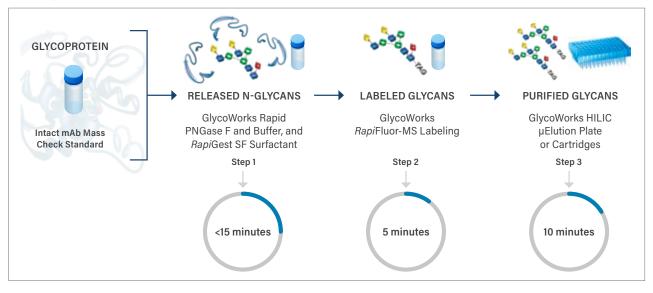

30

RELEASED N-GLYCAN ANALYSIS

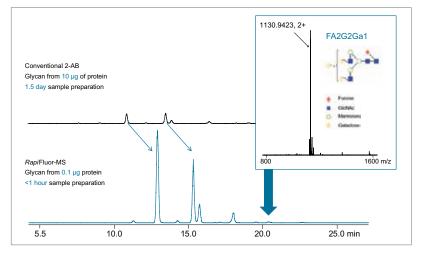
Waters GlycoWorks[™] Sample Preparation Kits and Standards, along with the ACQUITY UPLC and HPLC Glycan BEH Amide Columns, were designed cohesively to provide a seamless and efficient workflow from bench to analysis.

- Fast and simplified sample preparation with the GlycoWorks RapiFluor-MS N-Glycan Kit
- High resolving power due to the small particle size (1.7 µm) of the fully porous material
- Reproducible column-to-column performance due to the chemical and mechanical stability of the Waters ethylene bridged hybrid (BEH) particle and ligand binding technology
- Scale-up and transferability possible with UPLC and HPLC versions

Released N-Glycan Workflow



GLYCOWORKS RAPIFLUOR-MS RELEASED N-GLYCANS SAMPLE PREPARATION


Waters GlycoWorks Consumables offer a more convenient, comprehensive, and effective sample-preparation solution for glycan analysis.

- The GlycoWorks RapiFluor-MS N-Glycan Kit ensures easy, quick preparation of released-labeled, N-glycan samples
- Streamlined protocols minimize errors and sample loss
- Greatly improved FLR and MS signal intensities help easily identify low-abundance N-linked glycans
- Complete modules for processing 96 samples with flexibility of processing between 8, 24, and 48 samples at a time depending on laboratory demands with automation scripts available
- Support easy training of analysts and the transferring of methods throughout an organization

Three Steps, as little as 30 minutes

Glycan Characterization by UPLC FLR with Xevo G2-XS QTof Mass Spectrometer

Un-ionized form of acids and bases give most retention. Retention of neutral analytes not affected by pH.

Ordering Information

GlycoWorks RapiFluor-MS Released N-Glycan Sample Preparation Kits

Description	P/N
GlycoWorks RapiFluor-MS N-Glycan Starter Kit—96 Sample	
Kit contains: GlycoWorks Deglycosylation Module, GlycoWorks Labeling Module, GlycoWorks Cleanup Module, GlycoWorks Sample Collection Module, ACQUITY UPLC Glycan BEH Amide, 1.7 μm, 2.1 × 150 Column, Ammonium Formate Solution – Glycan Analysis	176003635
GlycoWorks RapiFluor-MS N-Glycan Kit—96 Sample	176003606
Kit contains: GlycoWorks Deglycosylation Module, GlycoWorks Labeling Module, GlycoWorks Cleanup Module, GlycoWorks Sample Collection Module	1/0003000
GlycoWorks RapiFluor-MS N-Glycan Starter Kit—24 sample	
Kit contains: GlycoWorks Deglycosylation Module, GlycoWorks Labeling Module, GlycoWorks Cleanup Module, GlycoWorks Sample Collection Module, ACQUITY UPLC Glycan BEH Amide, 1.7 μm, 2.1 × 150 mm Column, Ammonium Formate Solution – Glycan Analysis	176003712
GlycoWorks RapiFluor-MS N-Glycan Kit—24 sample	176003713
Kit contains: GlycoWorks Deglycosylation Module, GlycoWorks Labeling Module, GlycoWorks Cleanup Module, GlycoWorks Sample Collection Module	1/0003/13
GlycoWorks RapiFluor-MS N-Glycan Refill Kit—24 sample	176003714
Kit contains one of each: GlycoWorks Deglycosylation Module and the GlycoWorks Labeling Module	1/0003/14
GlycoWorks Rapid Deglycosylation 1 × 24	186008939
Kit contains: one vial of GlycoWorks Rapid PNGaseF Enzyme and Buffer; and, one vial of 10-mg RapiGest SF Surfactant	100000333
GlycoWorks Rapid Deglycosylation 3 × 8	186008841
GlycoWorks Rapid Deglycosylation Kit 2 × 48	186004579

GlycoWorks RapiFluor-MS N-Glycan Automation Kits

Description	P/N
GlycoWorks RapiFluor-MS N-Glycan Script Starter Kit - Automation	
Kit contains: GlycoWorks Automation Script Pack-CD; Intact mAb Mass Check Standard (unlabeled); <i>Rapi</i> Fluor-MS Intact mAb Mass Check Standard (deglycosylated, labeled, and purified); GlycoWorks Rapid Deglycosylation Kit – 2 × 48; GlycoWorks <i>Rapi</i> Fluor-MS Labeling Module – Automation; GlycoWorks HILIC µElution Plate; GlycoWorks SPE Reagents – Automation; GlycoWorks Sample Collection Module – Automation; ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 µm, 2.1 × 150 mm Column; Mobile phase concentrate: ammonium formate	176004151
GlycoWorks RapiFluor-MS N-Glycan Starter Kit - Automation	
Kit contains: Intact mAb Mass Check Standard (unlabeled); <i>Rapi</i> Fluor-MS Intact mAb Mass Check Standard (deglycosylated, labeled, and purified); GlycoWorks Rapid Deglycosylation Kit – 2 × 48; GlycoWorks <i>Rapi</i> Fluor-MS Labeling Module – Automation; GlycoWorks HILIC µElution Plate; GlycoWorks SPE Reagents – Automation; GlycoWorks Sample Collection Module – Automation; ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 µm, 2.1 × 150 mm Column; Mobile phase concentrate: ammonium formate	176004152
GlycoWorks RapiFluor-MS N-Glycan Kit - Automation	
Kit contains: GlycoWorks Rapid Deglycosylation Kit – 2 × 48, GlycoWorks <i>Rapi</i> Fluor-MS Labeling Module – Automation, GlycoWorks HILIC µElution Plate, GlycoWorks SPE Reagents – Automation and GlycoWorks Sample Collection Module – Automation	176004153
GlycoWorks RapiFluor-MS N-Glycan Basic Kit - Automation	
Kit contains: GlycoWorks Rapid Deglycosylation Kit – 2 × 48, GlycoWorks <i>Rapi</i> Fluor-MS Labeling Module – Automation, GlycoWorks HILIC µElution Plate, and GlycoWorks SPE Reagents – Automation	176004154

RapiFluor-MS Released N-Glycan Standards and Accessories

Description	P/N
RapiFluor-MS Dextran Calibration Ladder 50 µg/vial	186007982
RapiFluor-MS Glycan Performance Test Standard 400 pmol total/vial	186007983
RapiFluor-MS High Mannose Standard	186008317
RapiFluor-MS Intact mAb Standard	186008843
RapiFluor-MS Quantitative Glycan Standard	186008791
RapiFluor-MS Sialylated Glycan Performance Test Standard	186008660
Intact mAb Mass Check Standard*	186006552
Ammonium Formate Solution – Glycan Analysis 5000 mM	186007081
GlycoWorks Rapid Buffer—5 mL	186008100
 Controls Standard included in kit. 	

Description	P/N
<i>Rapi</i> Gest SF 3 mg vial	186008090
RapiGest SF 10 mg vial	186002123
96-Well Plate Extraction Manifold	186001831
Vacuum Manifold Shims,** 3/set	186007986
Positive Pressure Manifold Spacer for the GlycoWorks <i>Rapi</i> Fluor-MS N-Glycan Kit [*] 1/pk	186007987
Vacuum Pump 220 v/240 v 50 Hz	725000604
Positive Pressure Manifold	186006961
Modular Heat Block for 1 mL tubes/96 wells	186007985
ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 $\mu m,$ 2.1 \times 150 mm Column	186004742

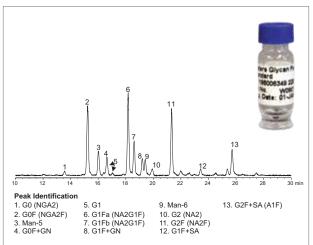
** Essential for kit use.

GLYCAN PERFORMANCE TEST STANDARDS AND DEXTRAN CALIBRATION LADDERS

Benchmarking, Method Development, and Troubleshooting

Glycan Performance Test Standards

Glycan Performance Test Standards, available in RapiFluor-MS or 2-AB versions, are Human-like IgG spiked with Man-5 and Man-6 and is QC verified to contain the components needed to benchmark and evaluate ACQUITY UPLC Glycan BEH Amide Columns containing 1.7 µm particles and the XBridge Glycan BEH Amide Columns that contain either 2.5 µm or 3.5 µm particles. It is also valuable to use as an additional RapiFluor-MS or 2-AB labeled control to assess digestion and labeling reaction efficiencies. Additional RapiFluor-MS labeled standards are available for high mannose or highly sialylated species to perform system suitability tests for various released N-glycan workflows.


Dextran Calibration Ladders

The Dextran Calibration Ladders allow the user to tie together the entire GlycoWorks Sample Preparation Solution seamlessly to the Waters ACQUITY UPLC System and GlycoBase Database Search. Using these labeled standards allows the user to calibrate their system based on GU units, and have confidence in results. Available in 2-AB, 2-AA, and the RapiFluor-MS labels.

Ordering Information

Validation Kits Description

Column, 3/pk

2-AB Glycan Performance Test Standard, FLR Trace.

ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 µm, 2.1 × 100 mm Column

ACQUITY UPLC Glycan BEH Amide Columns and Method

ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 µm, 2.1 × 50 mm Column

ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 µm, 2.1 × 100 mm Column

ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 µm, 2.1 × 5 mm VanGuard

186004907 Method Validation Kit¹ ACQUITY UPLC Glycan BEH Amide, 130 Å, 1.7 µm, 2.1 x150 mm Column 186004742

P/N

186004740

186004741

186004739

Note: ACQUITY UPLC Glycan BEH Amide, 1.7 µm Columns are designed for use with the ACQUITY UPLC System. The benefits of the small particle packing in ACQUITY UPLC Glycan BEH Amide, 1.7 µm Columns are only realized with the low system volume and low detector dispersion of an ACQUITY UPLC System. ¹Three columns from three different batches of BEH Amide, 130 Å material.

GLYCOWORKS ANALYTICAL PROFESSIONAL SERVICES

GlycoWorks Analytical Professional Services provide turn-key solutions for analytical labs seeking to expand released N-glycan capabilities. These product offerings include on-site training for GlycoWorks RapiFluor-MS sample preparation, chromatographic instrument setup, and optimization of HILIC chromatography through data analysis. This solution can be optimized for a variety of user scenarios and is available for both Empower and UNIFI workstations. For more information, please reference the Professional Services and GlycoWorks RapiFluor-MS N-Glycan Analysis Reference Guide (p/n: 720006146EN).

Ordering Information

GlycoWorks Analytical Professional Services

Description	P/N
GlycoWorks Solution Training for Empower	176004188
GlycoWorks Solution Training for UNIFI	176004187

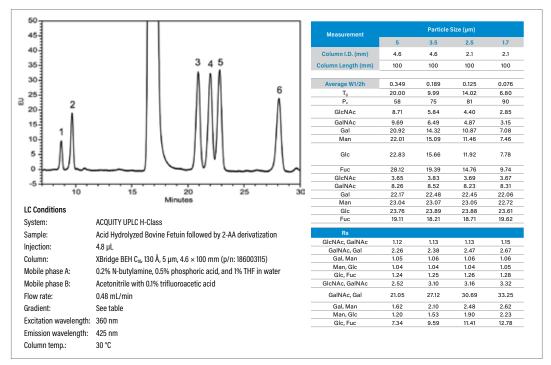
34

XBridge Glycan BEH Amide HPLC and UHPLC Columns and Method Validation Kits

Description	P/N
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 2.1 × 5 mm VanGuard Column, 3/pk	186007262
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 2.1 × 50 mm XP Column	186007263
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 2.1 × 100 mm <i>XP</i> Column	186007264
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 2.1 × 150 mm <i>XP</i> Column	186007265
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 2.1 × 150 mm XP Column Method Validation Kit ¹	186007266
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 3.0 × 30 mm XP Column	186008038
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 3.0 × 75 mm XP Column	186008039
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 3.0 × 150 mm <i>XP</i> Column	186008040
XBridge Glycan BEH Amide, 130 Å, 2.5 $\mu m,$ 4.6 \times 20 mm Guard Column, 2/pk³	186007267
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 4.6 × 50 mm XP Column	186007268
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 4.6 × 100 mm XP Column	186007269
XBridge Glycan BEH Amide, 130 Å, 2.5 µm, 4.6 × 150 mm XP Column	186007270
XBridge Glycan BEH Amide, 130 Å, 2.5 $\mu m,$ 4.6 \times 150 mm \textit{XP} Column Method Validation Kit^1	186007271
XBridge Glycan BEH Amide, 130 Å, 3.5 $\mu m,$ 2.1 \times 10 mm Sentry Guard Cartridge, 2/pk²	186007505
XBridge Glycan BEH Amide, 130 Å, 3.5 µm, 2.1 × 50 mm Column	186007502
XBridge Glycan BEH Amide, 130 Å, 3.5 µm, 2.1 × 100 mm Column	186007503
XBridge Glycan BEH Amide, 130 Å, 3.5 µm, 2.1 × 150 mm Column	186007504
XBridge Glycan BEH Amide, 130 Å, 3.5 $\mu m,$ 4.6 \times 20 mm Sentry Guard Cartridge, 2/pk^3	186007272
XBridge Glycan BEH Amide, 130 Å, 3.5 µm, 4.6 × 50 mm Column	186007273
XBridge Glycan BEH Amide, 130 Å, 3.5 µm, 4.6 × 100 mm Column	186007274
XBridge Glycan BEH Amide, 130 Å, 3.5 µm, 4.6 × 150 mm Column	186007275
XBridge Glycan BEH Amide, 130 Å, 3.5 μm, 4.6 × 150 mm Column Method Validation Kit ¹	186007277
XBridge Glycan BEH Amide, 130 Å, 3.5 µm, 4.6 × 250 mm Column	186007276

¹Three columns from three different batches of BEH Amide, 130 Å material.
 ² Requires 2.1 × 10 mm Universal Sentry Guard Holder, p/n: WAT097958.
 ³ Requires 4.6 × 20 mm Universal Sentry Guard Holder, p/n: WAT046910.

Reductive Amination Glycan Sample Preparation Kits and Standards


Description	P/N
GlycoWorks Reductive Amination High-Throughput Prep Kit	176003090
GlycoWorks HILIC µElution 96-Well Plate	186002780
RapiGest SF 1 mg Vial	186001860
GlycoWorks Control Standard, 100 μg Vial	186007033
GlycoWorks Reagent Kit	186007034
Manifold Waste Tray	600001282
GlycoWorks Reductive Amination Single-Use Prep Kit	176003119
GlycoWorks HILIC 1 cc Cartridge (10/pk)	186007080
RapiGest SF1 mg Vial	186001860
GlycoWorks Control Standard, 100 μg Vial	186007033
GlycoWorks Reagent Kit	186007034
2-AB Glycan Performance Test Standard	
The Glycan Performance Test Standard is a 2-AB labeled human IgG-like standard that is QC verified to contain the components needed to benchmark and evaluate ACQUITY UPLC Glycan BEH , 1.7 μm Columns.	186006349
2-AB Dextran Calibration Ladder	
The 2-AB labeled, Dextran Calibration Ladder is used to calibrate the HILIC column from retention time to GU values. This calibration ladder provides good peak shape and reliable identification from 2 to 30 glucose units.	186006841
2-AA Dextran Calibration Ladder	
The 2-AA labeled, Dextran Calibration Ladder is used to calibrate the HILIC column from retention time to GU values. This calibration ladder provides good peak shape and reliable identification from 2 to 30 glucose units.	186007279
GlycoWorks HILIC 1 cc Cartridge, 20/pk	186007080
GlycoWorks HILIC1 cc Flangeless Cartridge	186007239
GlycoWorks HILIC µElution Plate	186002780
GlycoWorks Reagent Kit	186007034
GlycoWorks SPE Reagents	186007992
Ammonium Formate Solution – Glycan Analysis	186007081

MONOSACCHARIDE AND SIALIC ACID ANALYSIS FROM GLYCOPROTEINS

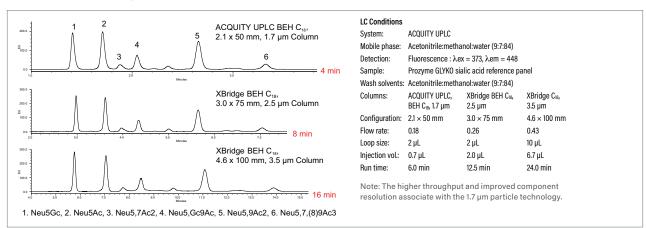

Monosaccharide Analyses

Apart from charged sialic acid species, the primary monosaccharides found in N-linked and O-linked glycans are the neutral monosaccharides N-acetylglucosamine (GlcNAc), N-acetylglalactosamine (GalNAc), galactose (Gal), glucose (Glc), mannose (Man), and fucose (Fuc). Analyses of non-charged monosaccharides frequently begins by acid hydrolysis of the glycan by incubation with trifluoroacetic acid or hydrochloric acid. Usually, a three-hour incubation at 100 °C with 2 M trifluoroacetic acid releases all of the monosaccharides; however, during hydrolysis, the N-acetyl groups on GlcNAc and GalNAc are hydrolyzed to glucosamine (GlcN) and galactosamine (GalN). Following hydrolysis, the released monosaccharides are derivatized using 2-aminobenzoic acid (2-AA), as detailed in the Waters application note "Future Proofing the Biopharmaceutical QC Laboratory: Chromatographic Scaling of HPLC Monosaccharide Analyses Using the ACQUITY UPLC H-Class Bio System" (p/n: 720005255EN). As the application note explains, this method can reliably generate sensitive, high resolution, and quantitative monosaccharide analyses independent of a laboratory's available LC instrumentation.

HPLC-Based Analyses of 2-AA Labeled Monosaccharides from Acid Hydrolyzed Bovine Fetuin

HPLC analysis of monosaccharides. A separation performed with an XBridge BEH C18, 130 Å, 5 µm Column as detailed in Waters Applications Note: 720005255EN. Monosaccharides are identified as follows: (1) N-acetylglucosamine (GlcNAc), (2) N-acetylgalactosamine (GalNAc), (3) Galactose (Gal), (4) Mannose (Man), (5) Glucose (Glc), and (6) Fucose (Fuc).

LC Conditions	
System:	ACQUITY UPLC H-Class
Sample:	Acid Hydrolyzed Bovine Fetuin followed by 2-AA derivitization
Injection:	4.8 μL on 4.6 mm l.D. column, 2.1 μL on 2.1 mm l.D. columns
Columns:	XBridge BEH C ₁₈ , 130 Å, 5 μm, 4.6 × 100 mm (p/n: 186003115)
	XBridge BEH C ₁₈ , 130 Å, 3.5 μm, 2.1 × 100 mm (p/n: 186003033)
	ХBridge BEH C ₁₈ , 130 Å, 2.5 µm <i>XP</i> , 2.1 × 100 mm (p/n: 186006031)
	ACQUITY UPLC BEH C18, 130 Å, 1.7 μm, 2.1 × 100 mm (p/n: 186002352)
Mobile phase A:	0.2% N-butylamine,0.5% phosphoric acid, and 1% THF in water
Mobile phase B:	Acetonitrile with 0.1% trifluoroacetic acid
Gradient:	See table
Flow rate:	See table
Excitation wavelength:	360 nm
Emission wavelength:	425 nm
Column temp.:	30 °C


Method Details (flow rate and time)

		5 µm		3.5 µr	n	2.5 µr		1.7 µn	
Step	%B'	Flow (mL min-1)	Time (min)						
1	7	0.480	0.00	0.685	0.00	0.200	0.00	0.294	0.00
2	7	0.480	7.78	0.685	5.45	0.200	3.89	0.294	2.64
3	17	0.480	27.78	0.685	19.47	0.200	13.88	0.294	9.44
4	100	0.480	28.89	0.685	20.24	0.200	14.43	0.294	9.82
5	100	0.480	40.00	0.685	28.03	0.200	19.99	0.294	13.60
6	7	0.480	41.11	0.685	28.81	0.200	20.54	0.294	13.97
7	7	0.480	50.00	0.685	35.04	0.200	24.98	0.294	17.00

Geometric scaling of a monosaccharide separation on XBridge BEH C₁₈, 130 Å, (A) 5 µm particle, (B) 3.5 µm particle, (C) 2.5 µm particle, and (D) 1.7 µm particle noting higher throughput and improved component Rs via use of 1.7 µm particle technology.

Sialic Acid Analyses

A diverse range of sialic acids are found in nature, but the two major sialic acids species found on N- and O-linked glycans contained in biopharmaceuticals are N-acetyl-neuraminic acid (Neu5Ac) and N-glycolyl-neuraminic acid (Neu5Gc). Since sialylation can enhance serum half-life as well as affect biological activity, it is important to accurately monitor both the quantitative levels and types of sialic acids during all stages of the product life cycle. Many LC-based methods begin with the release of the targeted sialic acids under milder acid hydrolysis conditions (e.g., 2 M acetic acid for two hours at 80 °C). The released sialic acids can be then derivatized with 1, 2-diamino-4, 5-methylenedioxybenzene-2HCl (DMB) dye. Of particular importance is the fact that DMB- labeled sialic acids are light sensitive and liable to degradation and should be analyzed within 24 hours of labeling. This can become a significant problem if a large number of samples need to be analyzed using traditional HPLC-based techniques that can take more than 30 minutes per sample analysis.

UPLC vs. HPLC-Based Analyses of DMB-Labeled, Sialic Acid Test Mix

Geometric scaling of DMB-labeled sialic acid standards on XBridge BEH C₁₈, 130 Å, 3.5 µm particle (bottom), 2.5 µm particle (middle), and ACQUITY UPLC BEH C₁₈, 130 Å, 1.7 µm particle (top).

Ordering Information

ACQUITY UPLC BEH C18, 130 Å and XBridge BEH C18, 130 Å HPLC and UHPLC Columns

	Particle S	ize: 1.7 μm
ACQUITY UPLC BEH C18, 130 Å	Dimension	P/N (1/pk)
	2.1 × 50 mm	186002350
	2.1 × 100 mm	186002352
	2.1 × 150 mm	186004742
XBridge BEH C ₁₈ , 130 Å, <i>XP</i>	Particle S	ize: 2.5 μm
	2.1 × 100 mm	186006031
	3 × 100 mm	186006035
	3 × 150 mm	186006710
XBridge BEH C ₁₈ , 130 Å	Particle Si	ize: 3.5 µm
	2.1 × 100 mm	186003033
	Particle S	Size: 5 µm
	4.6 × 100 mm	186003115

Oligonucleotide Analysis

Contents

Oligonucleotide Analysis	41
Exceptional Resolution of Oligonucleotide Mixtures	41
Columns for Large DNA/RNA Species	44
Anion-Exchange HPLC of Nucleic Acids	44
MassPREP Oligonucleotide Standard	45
Oligonucleotide Desalting by Solid-Phase Extraction	45

Oligonucleotide Analysis

Waters Oligonucleotide Columns contain second-generation hybrid silica BEH Technology particles functionalized with C_{18} . The separation of detritylated synthetic oligonucleotide samples is based on the wellestablished method of ion-pair, reversed-phase chromatography. The availability of 1.7 µm UPLC particles or 2.5 µm HPLC particles in various column dimensions provides flexibility to meet various lab-scale isolation or analysis needs, and delivers exceptional sample resolution and superior column life. In addition, Waters manufacturing and quality control testing procedures help ensure consistent batch-to-batch and column-to-column performance regardless of application demands.

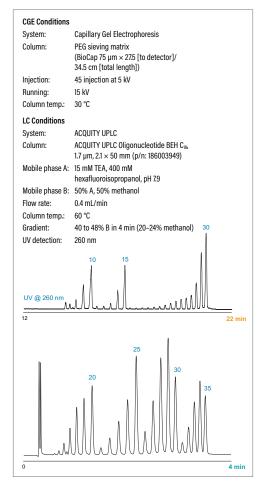
- Separation efficiencies equivalent to or exceeding those of PAGE, CGE, or ion-exchange HPLC methods
- The ability to distinguish/separate failure sequences from detritylated full-length products
- Column scalability for laboratory-scale isolation needs
- Exceptional column life for reduced cost per analysis
- QC tested with MassPREP Oligonucleotide Standard (p/n: 186004135) to help ensure performance consistency

EXCEPTIONAL RESOLUTION OF OLIGONUCLEOTIDE MIXTURES

ACQUITY UPLC Oligonucleotide C_{18} , 1.7 µm (designed for use with an ACQUITY UPLC System) and XBridge Oligonucleotide C_{18} , 2.5 µm Columns are well suited for the analysis of detritylated oligonucleotides using ion-pair, reversed-phase chromatography. As indicated (see figure on right), separations are comparable to those obtained by capillary gel electrophoresis (CGE) in terms of component resolution, yet analysis times are significantly decreased using Waters UPLC Technology. The ability to resolve large oligonucleotide sequences (e.g., N from N-1) is possible due to the enhanced resolving power obtained using sub-3-µm, BEH Technology particles. In addition, quantitation with molecular weight characterization of the separated target oligonucleotide product from failure sequences is possible using Waters Oligonucleotide Columns with hyphenated-mass spectrometry methods and MS-friendly eluents.

Ordering Information

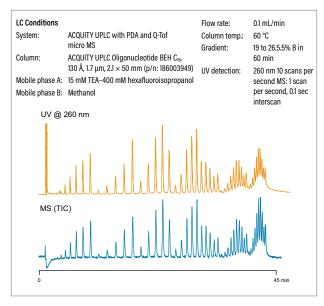
ACQUITY UPLC Oligonucleotide BEH $C_{\mbox{\tiny 18}}$ Columns and Method Validation Kits


BEH C ₁₈ , 130 Å*	Particle S	ize: 1.7 µm
	Dimension	P/N
	2.1 × 50 mm	186003949
	2.1 × 100 mm	186003950
	2.1 × 150 mm	186005516
BEH C ₁₈ , 130 Å Method Validation Kit**	2.1x 100 mm	186004898

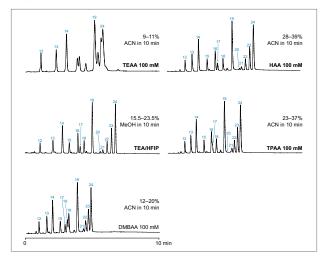
* For use on Waters ACQUITY UPLC Systems.

** Three Columns from three different batches of material.

Separation of Detritylated Oligodeoxythymidine Ladders by Capillary Gel Electrophoresis (CGE) vs. Ion-Pair, Reversed-Phase Chromatography



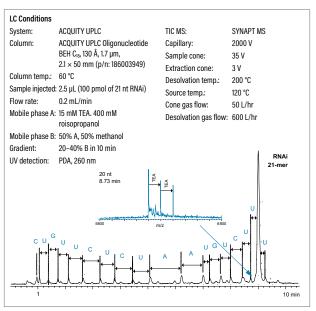
XBridge Oligonucleotide BEH $C_{\mbox{\tiny I8}}$ HPLC and UHPLC Columns and Method Validation Kits


BEH C ₁₈ , 130 Å	Particle Si	ze: 2.5 µm	
	Dimension	P/N	
	2.1 × 50 mm	2.1 × 50 mm 18	186003952
	$4.6 \times 50 \text{ mm}$	186003953	
BEH C ₁₈ , 130 Å OBD Prep	10 × 50 mm	186008212	
	19 × 50 mm 18600896	186008962	
	30 × 50 mm	186008963	
	50 × 50 mm	186008964	
BEH C18, 130 Å Method Validation Kit**	4.6 × 50 mm	186004906	

** Three Columns from three different batches of material.

Separation of a 15-60 mer Detritylated Oligodeoxythymidine Ladder

Impact of Different Ion-Pairing Agents on Varying Oligonucleotide Sequence Separations


Improved oligonucleotides separations can be achieved using alternative IP agents compared to use of traditional TEAA.

UPLC-MS Analysis of Interfering RNA Oligonucleotides

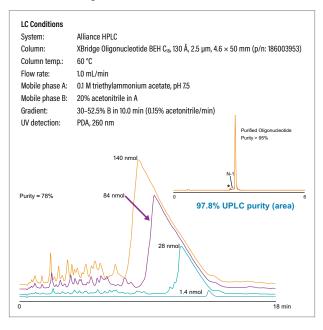
Discovery of the RNA interference (RNAi) mechanism now broadly used for silencing of target gene expression has prompted a need for the analysis of small interfering RNAs (siRNA) molecules. To satisfy the need for a robust, fast, and sensitive analysis of 20–25 nucleotides of small interfering RNA (siRNA), a UPLC-MS method has been developed utilizing UPLC Oligonucleotide Columns and SYNAPT HDMS[™] Mass Spectrometer.

The acquisition of the accurate masses allowed for an assignment of the peaks of 5'-truncated oligomers (failed sequences generated during oligonucleotide synthesis), as well as some other impurities. The mass of each peak in the MS chromatogram was deconvoluted using MaxEnt 1 Software. The tentative 5'-end failure products are assigned in the below figure. Nearly the entire sequence of the parent oligonucleotide was elucidated. MS analysis also revealed a presence of an extra uridine mononucleotide added to the target 21-mer RNAi sequence.

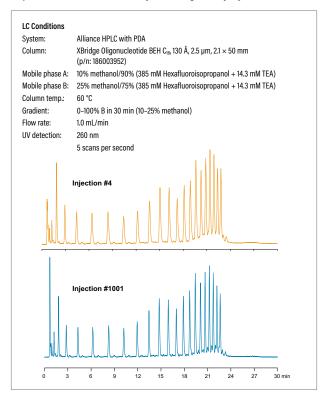
LC-MS Analysis of RNA (21 mer)

Outstanding Column Life

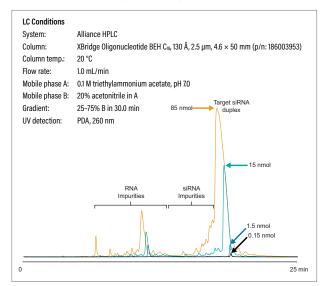
Waters Oligonucleotide Columns packed with BEH Technology particles have shown remarkable column longevity, under these demanding separation conditions, while maintaining outstanding separation performance. By comparison, significantly reduced column life results when traditional silica-based columns are used under these same demanding separation conditions.


Scalable DNA and RNAi Separations with Good Product Recovery

XBridge Oligonucleotide BEH C₁₈, 130 Å Columns are the preferred offering for detritylated oligonucleotide purifications due to the availability of column sizes designed to meet lab-scale isolation requirements. The choice of XBridge Oligonucleotide C₁₈ Column dimension and operating flow rate depends primarily on the scale of the synthesis reaction mixture. For example, a 4.6 × 50 mm column containing XBridge Oligonucleotide BEH C₁₈, 130 Å, 2.5 μ m material is an excellent selection when oligonucleotide mass loads are less than or equal to 0.2 μ mol. Selection of the appropriate column size for the amount of oligonucleotide sample loaded is recommended to maximize component resolution and recovery of the target product from non-desired failure sequences.


For researchers involved in gene silencing it is often necessary to work with RNA of high purity. Crude synthetic oligonucleotides used for gene knockout are typically purified. The figure below illustrates a lab-scale purification of 21 mer RNA at various column loads. Using an Oligonucleotide column chemistry and an Alliance System, large quantities of crude single stranded RNA can be successfully purified yielding material of high purity, approximately 95%, with an estimated yield of 55% based on collected peak area to the total peak area of the sample.

In addition, XBridge Oligonucleotide Columns are well suited for the analysis and purification of siRNA. As shown in the figure below, siRNA is well resolved from single stranded RNA and truncated duplexes.


Purification of Single Stranded RNA

Separation of 5-25 mer Detritylated Oligodeoxythymidine Ladder

Purification of siRNA Duplex from Impurities

Dimension	Approx Mass Load*	Yield**	Flow Rate
2.1 × 50 mm	0.04 µmol	0.2 mg	0.2 mL/min
4.6 × 50 mm	0.20 µmol	1.0 mg	1.0 mL/min
10 × 50 mm	1.00 µmol	4.5 mg	4.5 mL/min
19 × 50 mm	4.00 µmol	16.0 mg	16.0 mL/min
$30 \times 50 \text{ mm}$	9.00 µmol	40.0 mg	40.0 mL/min
$50 \times 50 \text{ mm}$	25.00 µmol	110.0 mg	110.0 mL/min

 Values are only approximates and vary depending on oligonucleotide length, base composition, and "heart-cutting" fraction collection method used.

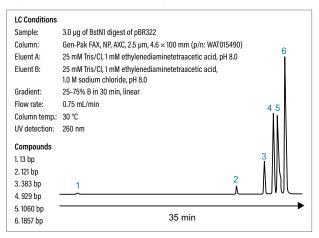
** Estimated for average oligonucleotide MW and synthesis yield.

COLUMNS FOR LARGE DNA/RNA SPECIES

In general, molecular biology methods for manipulation of DNA rely on restriction enzymes, polymerase-chain reaction (PCR), and sequencing techniques. Using these methods, genomic DNA is typically converted into shorter double stranded (ds)DNA sequences, typically 100–1000 base pairs (bp) in length. The shorter dsDNA molecules are often analyzed or isolated by methods such as slab gel or capillary electrophoresis. Use of Waters ACQUITY UPLC BEH C₁₈, 300 Å Reversed-Phase or Gen-Pak FAX Anion-Exchange Columns offer alternatives to more traditional electrophoretic methods and are particularly well suited for various analytical and small-scale purification applications.

Ordering Information

ACQUITY UPLC BEH C18, 300 Å Columns for DNA/RNA Fragments


Particle S	ize: 1.7 µm
Dimension	P/N
2.1 × 50 mm	186003685

ANION-EXCHANGE HPLC OF NUCLEIC ACIDS

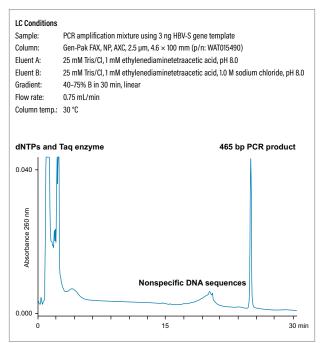
Gen-Pak FAX Anion-Exchange Columns

Waters Gen-Pak FAX Columns offer the highest resolution available for anion-exchange HPLC of nucleic acids. The Gen-Pak FAX Column contains a weak anion exchanger based on DEAE functionalized non-porous resin. It contains 2.5 µm particles and is well suited for analytical and micro-preparative applications.

Separation of DNA Restriction Fragments

Ordering Information

44

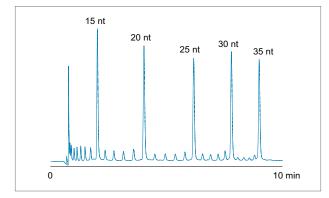

Gen-Pak FAX HPLC Column

Description	Dimension	P/N
Gen-Pak FAX Column	4.6 × 100 mm	WAT015490
Gen-Pak FAX Replacement Inlet Filter	_	WAT015715

Separation of Duplex DNA Fragments: HaeIII and Mspl Restriction Enzyme Digests of pBR322 Plasmid

Column:	ACQUITY UPLC ACQUITY UPLC Peptide BEH C18, 300 Å, 1.7 $\mu m,$ 2.1 \times 50 mm (p/n: 186003685)
Column temp.:	50 °C
Flow rate:	0.2 mL/min
Mobile phase A:	0.1 M triethylammonium acetate, pH 7.0
Mobile phase B:	20% acetonitrile in A
Gradient:	575-84.5% B in 20.0 min
UV detection:	PDA, 260 nm
aelli Restrictio	on Enzyme 123/124 192 234 267
<u> </u>	

Chromatography of a PCR Amplification Mixture Generated using 3 ng and 1 fg of HBV S-Gene Template


MassPREP OLIGONUCLEOTIDE STANDARD

Benchmarking, Method Development, and Troubleshooting

- Contains a carefully defined mixture of synthesized oligodeoxythymidine fragments
- Useful in testing and confirming HPLC/UPLC, LC-MS, and column performance for oligonucleotide applications
- Each is QC tested and shipped with a certificate of analysis

The pre-packaged MassPREP Oligonucleotide Standard is designed for verification of HPLC/UPLC instrument and column performance for analysis of synthetic oligonucleotides. Approximate equimolar amounts of 15, 20, 25, 30, and 35 nucleotide (nt) long oligodeoxythymidines are lyophilized and packaged in 1.5 mL LC vials. These vials are vacuum-sealed in foil pouches to reduce degradation that can occur by excessive exposure to light and air. Approximately 1 nmole of each oligonucleotide is present in the vial.

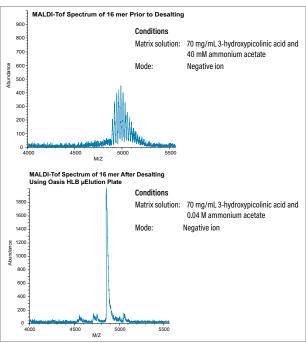
Separation of MassPREP Oligonucleotide Standard on ACQUITY UPLC Oligonucleotide C18, 130 Å, 1.7 μm Column

Waters ACQUITY UPLC analysis of MassPREP Oligonucleotide Standard on an ACQUITY UPLC Oligonucleotide C_{10} , 130 Å, 1.7 µm Column. The main components are labeled. Small peaks eluting between labeled oligonucleotides are N-1, N-2, etc. failure sequences generated during the oligonucleotide syntheses. The ACQUITY UPLC System is equipped with 50 µL standard mixer and PDA detector (260 nm).

Ordering Information

MassPREP Oligonucleotide Standard

Description	Qty.	P/N
MassPREP Oligonucleotide Standard	1/pk	186004135


OLIGONUCLEOTIDE DESALTING BY SOLID-PHASE EXTRACTION

Oasis µElution Plates

- Removes salt prior to MS analysis
- Low elution volumes
- High sensitivity
- Sample concentrating
- High throughput

Desalting of synthetic oligonucleotides is essential for MS analysis (QC, genotyping applications and SNP analysis). Waters Oasis[™] µElution Plate is an excellent choice for high-throughput analysis with minimal amount of sample. The Oasis µElution Plate combines patented plate design, proven chemistries, and generic protocols enabling elution volumes as low as 25 µL. You can perform SPE cleanup and concentration of very small sample volumes. The Oasis Hydrophilic-Lipophilic-Balanced (HLB) Sample Extraction Products incorporate a patented copolymer made from a balanced ratio of two monomers; the lipophilic divinylbenzene and the hydrophilic N-vinylpyrolodone that is ideally suited for this application.

Effective Use of Oasis HLB for Oligonucleotide Desalting Prior to MALDI-Tof MS

Ordering Information

Oasis HLB µElution Plate (for Oligonucleotides)

Description	P/N
Oasis HLB µElution Plate (for Oligonucleotides)	186001828BA

NO MATTER YOUR LC SYSTEM, WE HAVE A COLUMN FOR YOU.

ALLIANCE HPLC

Dispersion: >40 µL Columns: ≥4.6 mm I.D., ≥3.5 µm particles Recommended column: 4.6 mm I.D., 5 µm particles Typical operating pressure: <5000 psi

waters.com/Alliance

ACQUITY Arc ACQUITY Arc Bio

Dispersion: 20-30 µL Columns: ≥3.0 mm I.D., ≥2.5 µm particles Recommended column: 3.0 mm I.D., 2.5 µm particles Typical operating pressure: <9500 psi

waters.com/Arc

ACQUITY UPLC H-Class PLUS ACQUITY UPLC H-Class PLUS Bio

Dispersion: <20 µL Columns: ≥2.1 mm I.D., ≥1.6 µm particles Recommended column: 2.1 mm I.D., 1.7 µm particles Typical operating pressure: <15,000 psi

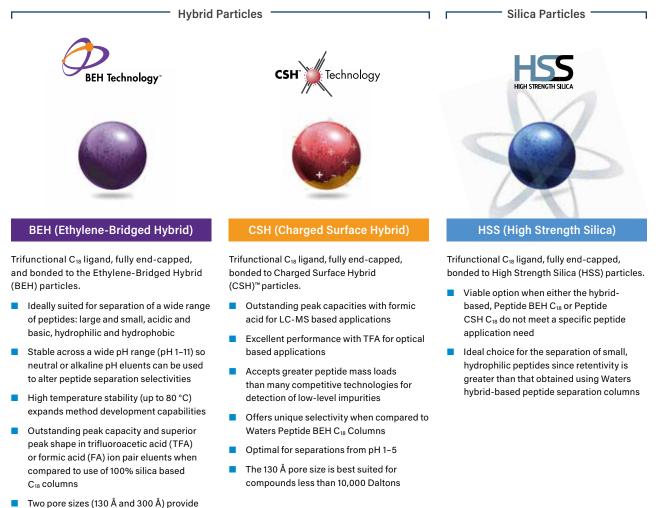
waters.com/HClassBio

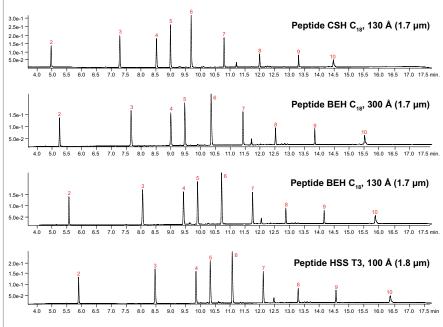
Peptide Analysis

Contents

Peptide Analysis
A Wide Range of Chemistries for Reversed-Phase Peptide Separations
Peptide BEH C18, 130 Å and 300 Å Columns51
Peptide CSH C18, 130 Å Columns
Peptide HSS T3 Columns
Cation-Exchange Peptide and Polypeptide Separations
Therapeutic Peptide Method Development Kit59
BioSuite HPLC and UHPLC Peptide Analysis Columns60
Cytochrome <i>c</i> Digestion Standard61
MassPREP Peptide Standard
Delta-Pak HPLC and UHPLC Columns
Symmetry HPLC and UHPLC Columns
BioSuite Cation-Exchange HPLC Columns
Additional Peptide Consumables

Peptide Analysis

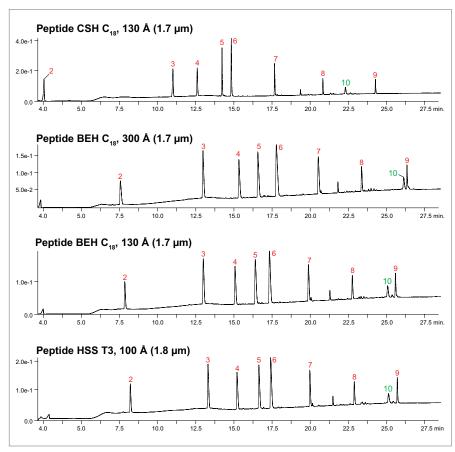

different separation selectivities for a wide range of peptides and small proteins


The desired separation, accurate quantitation, and identification of peptides ranging from proteomics investigations to biotherapeutics mAb characterization is challenging. To be successful, scientists acknowledge the importance of separation synergies that occur when a defined column, instrument, and method are assembled to address specific application needs.

Reversed-phase (RP) chromatography has become the separation mode of choice for many of these challenging applications. It offers relatively high resolving power and provides outstanding quantitative (UV) and qualitative (ESI-MS) information. In RP-based peptide separations, the size of the peptide as well as the hydrophobicity of the amino-acid side chains determine the elution order. Consequently, small, less hydrophobic peptide sequences elute first using a gradient of increasing organic solvent concentration.

A WIDE RANGE OF CHEMISTRIES FOR REVERSED-PHASE PEPTIDE SEPARATIONS

A peptide column needs to adapt to a wide range of peptides: hydrophobic, hydrophilic, small, and large. See the options below to choose the right column for your analysis.



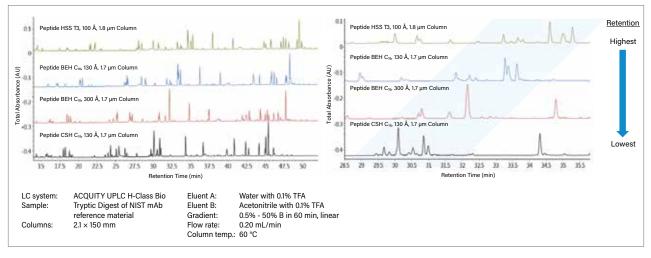
 Peptides contained in Waters MassPREP Peptide Standard Mixture, p/n: 186002337, were separated on 2.1 × 150 mm columns containing Waters Peptide CSH C₁₉, 130 Å (1.7 μm), Peptide BEH C₁₉, 300 Å (1.7 μm), Peptide BEH C₁₉, 130 Å (1.7 μm), or Peptide HSS T3 100 Å (1.8 μm) UPLC-based particles on a Waters ACQUITY UPLC H-Class Bio System using a gradient of increasing acetonitrile concentration with 0.1% TFA ion-pairing. Flow at

0.4 mL/min.

The MassPREP Peptide Standard Mixture contains allantoin (a void volume marker) and nine carefully selected peptides with a broad range of polarities and isoelectric points. 1 = Allantoin 158 Da (not shown in figure since elutes at column void volume), 2 = RASG-1: 1, 000 Da, 3 = Angiotensin frag.1–7: 898 Da 4 = Bradykinin: 1060 Da, 5 = Angiotensin II: 1046 Da, 6 = Angiotensin I: 1296 Da, 7 = Renin: 1758 Da, 8 = Enolase T35: 1872 Da, 9 = Enolase T37: 2827 Da, 10 = Melittin: 2846)

Separation of Peptide Standards Using 0.1% FA Ion Pairing on Waters Peptide Separation Columns

Peptides contained in Waters MassPREP Peptide Standard Mixture, p/n: 186002337, were separated on 2.1 × 150 mm columns containing Waters Peptide CSH C₁₀, 130 Å (1.7 μm), Peptide BEH C₁₀, 300 Å (1.7 μm), Peptide BEH C₁₀, 130 Å (1.7 μm), or Peptide HSS T3, 100 Å (1.8 μm) UPLC-based particles on a Waters ACQUITY UPLC H-Class Bio System using a gradient of increasing acetonitrile concentration with 0.1% FA ion-pairing. Flow at 0.2 mL/min.

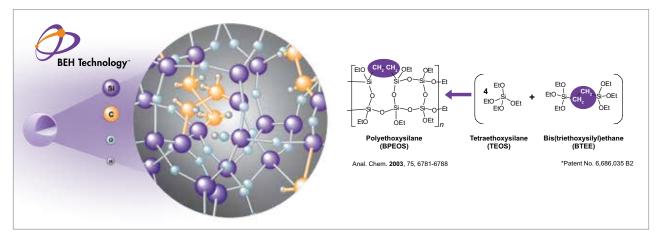

Sample as above.

Note: Different peptide separation selectivities and comparative retention time differences among the tested columns.

Elution order of peaks 9 and 10 switch when run in 0.1 FA vs. 0.1% TFA.

Separation of Peptide Standards Using 0.1% TFA Ion Pairing on Waters Peptide Separation Columns

Separation of Tryptic Digest of Reduced Alkylated National Institute of Standards and Technology's mAb on Waters Peptide Separation Columns



Waters UPLC (shown) and HPLC-based Peptide Separation Columns deliver different peptide selectivities and high peak capacities for the separation of complex peptide mixtures. In addition, each batch of material is specifically QC tested and qualified with a tryptic digest of cytochrome c to help ensure column-to-column consistency when used in validated methods.

PEPTIDE BEH C18, 130 Å AND 300 Å COLUMNS

Hybrid-Based Particles for Reversed-Phase Peptide Separations

In 1999, Waters first demonstrated how organic/inorganic Hybrid Particle Technology columns successfully addressed limitations (e.g., pH stability) that exist using 100% silica-based, reversed-phase columns for biocompound separations. In 2009, we advanced LC-based peptide separation capabilities by commercializing our Peptide BEH C₁₈, 130 Å, and BEH C₁₈, 300 Å HPLC- and UPLC-based columns both based on the second-generation BEH particles. In addition, we added an additional quality control test using a tryptic digest of cytochrome *c* to help ensure consistent column-to-column performance. To date, hundreds of referenced journal citations provide data that support the effective use of this column chemistry for a variety of separations in various diverse application areas.

The BEH Particle: First Key Chemistry Enabler of Waters UPLC Technology

Ethylene Bridged Hybrid (BEH) Technology synthesis creates particles that ensure extreme column performance and long column lifetime under harsh operating conditions.

CSH Technology Particles for Peptide Separations

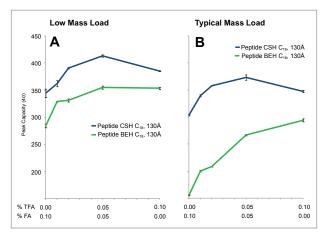
Waters innovative Peptide CSH C_{18} , 130 Å offerings expands on the already successful and well-recognized Peptide BEH C_{18} , 130 Å and BEH C_{18} , 300 Å columns. Based on comparative peptide separations, Peptide CSH C_{18} , 130 Å Columns exhibit improved load ability, greater peak capacities, and unique selectivity compared to Peptide BEH C_{18} , 130 Å. Its performance is also significantly less dependent on TFA ion pairing, making it ideal for MS applications where high sensitivity is desired. The use of the well-controlled, charged surface hybrid properties of Peptide CSH C_{18} , 130 Å holds significant promise for facilitating either challenging LC and/or LC-MS peptide separations.

PEPTIDE CSH C₁₈, 130 Å COLUMNS

Charged Surface Hybrid Particles Deliver Superior Peptide Separations in LC and LC-MS Applications

Waters patented synthesis process for its Charged Surface Hybrid (CSH) Technology particles imparts a low-level, positive charge to the surface of each particle. For that reason, when using our Peptide CSH C₁₈, 130 Å Columns, you must ensure a mobile-phase pH of less than 5 to enable peptide/ CSH surface-charge interactions. CSH Technology allows the columns to be successfully used with standard eluents containing trifluoroacetic acid or a weaker acid modifier, such as formic acid. You do not need to compromise between selecting a reversed-phase eluent that delivers sharp, symmetrically separated peaks (e.g., 0.1% trifluoroacetic acid) and one that minimizes reduction of MS signal (e.g., 0.1% formic acid). Additionally, the ability of the CSH C18, 130 Å column chemistry to accept greater peptide mass loads than many other columns enhances the ability to detect potentially important low-level constituents of the major components of interest.

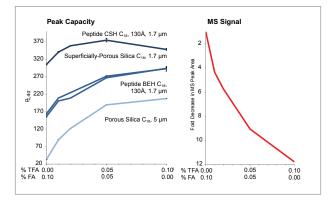
Excellent Mass Loading of Complex Peptide Samples


One of the inherent performance advantages of our CSH Technology is improved sample-mass loadability, the quantity of analyte that you can load onto a column before peak shape deteriorates. At typical mass loads, Peptide CSH C_{18} , 130 Å delivers a remarkably better performance than many existing C_{18} offerings. When loading 10× less sample, the difference in performance was less pronounced. Improved peptide-mass loadability is an excellent column asset for challenging separations, particularly for those that involve mixtures that comprise species present at vastly different concentrations.

The CSH Particle: Expands Upon BEH Technology

Charged Surface Hybrid (CSH) Technology improves selectivity and offers the highest possible performance for basic compounds in the acidic, low-ionic strength mobile phases commonly used in LC-MS laboratories.

Comparative Averaged Peptide Peak Capacities on Peptide CSH $C_{\rm 18}$, 130 Å vs. Peptide BEH $C_{\rm 18}$, 130 Å Based Columns (2.1 \times 150 mm) at Two Peptide Mass Loads and Differing Concentrations of Formic Acid and Trifluoroacetic Acid



Effect of column mass load on separated peptide peak capacity in formic acid, trifluoroacetic acid, and eluent blends of formic acid and trifluoroacetic acid. (A) approximate sample load of 0.06 µg peptide mixture. (B) approx. 0.6 µg peptide mixture. Values were derived from two replicates. Waters MassPREP Peptide Standard Mixture (p/n: 186002337) was used in the study.

A need persists for columns compatible with LC instrumentation. We recommend the use of low-dispersion LC instrumentation to extract full performance from a well-packed column containing 1.7 μ m particles. Waters eXtended Performance (XP) Columns packed with 2.5 μ m XP particles improves the productivity of existing HPLC instrumentation. You can scale high peak capacity peptide separations performed using a Peptide CSH C₁₈, 130 Å, 1.7 μ m Column to a Peptide CSH C₁₈, 130 Å, 2.5 μ m XP Column simply by altering flow rate and gradient time. You can readily employ CSH Technology for high peak capacity peptide separations using either HPLC, UHPLC, or UPLC instrumentation. Superior Performance in Eluents Containing Formic Acid or Trifluoroacetic Acid

Waters' Peptide CSH C₁₈, 130 Å particles contain a low and carefully defined concentration of positive charges that yield comparatively excellent peak shape for peptide separations that rely on mobile phases that contain formic acid or trifluoroacetic acid . The fact that the performance of a Peptide CSH C₁₈, 130 Å Column exhibits little dependence on strong ion-pairing agents makes it ideal for LC or LC-MS applications.

Comparative Averaged Peptide Peak Capacities on Selected Reversed-Phase Columns with Differing Concentrations of Formic Acid and Trifluoroacetic Acid

Effect of trifluoroacetic acid on peak capacity and MS signal. (A) Peak capacity as a function of acid modifier. Values were derived from two replicates. (B) Fold decrease in MS peak area as a function of acid modifier. Waters MassPREP Peptide Standard Mixture (p/n: 186002337) was used in study.

PEPTIDE HSS T3 COLUMNS

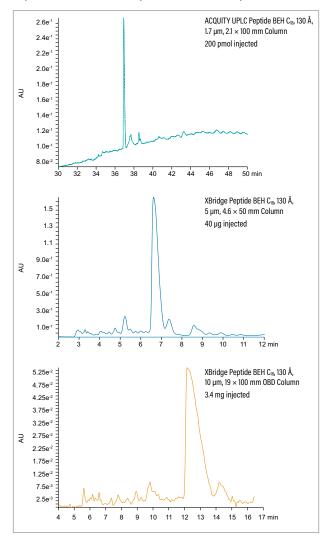
High pore volume HPLC particles do not possess the mechanical stability necessary to withstand the high pressures inherent in UPLC separations. Waters' material scientists addressed this challenge by developing a silica particle designed for high mechanical stability with the appropriate morphology to provide long UPLC column lifetimes and high UPLC efficiencies at high pressures. The 1.8 µm High Strength Silica (HSS) particle is the first and only 100% silica particle designed, tested, and intended for use in applications up to 15,000 psi (1034 bar).

The HSS particle technology is available in ACQUITY UPLC Peptide HSS T3, 100 Å, 1.8 μ m as well as XSelect Peptide HSS T3, 100 Å, *XP* 2.5 μ m and 5 μ m for UHPLC and HPLCbased separations for seamless transfer between UPLC and HPLC/UHPLC instrument platforms. Simplifying Column Choice for Peptide Purifications

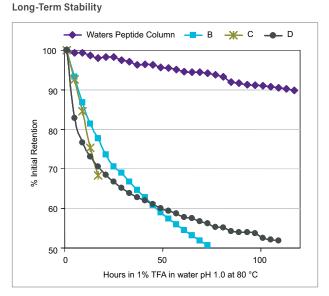
Our peptide columns are versatile. Often, a single C₁₈-based chemistry can separate a wide range of peptides, requiring little time and expense to obtain satisfactory results. We offer peptide packings in many particle sizes and column dimensions. (See the "Peptide Preparative Column Selection Guide" below.)

Increased Assurance with Waters Peptide Columns

Waters rigorously tests each batch of our synthesized Peptide BEH C₁₈, 130 Å; Peptide BEH C₁₈, 300 Å; Peptide CSH C₁₈, 130 Å;



and Peptide HSS T3, 100 Å particles used in our manufactured columns. To pass, each batch of material must satisfactorily separate a complex protein digest using a gradient separation with well-defined pass/ fail criteria. In addition, each and every manufactured column is tested and must exceed established packed column efficiency values before accepted for customer purchase. In combination, these tests (results available in Certificate of Analysis documentation) help ensure consistent batch-to-batch and columnto-column performance.


Certificate of analysis information includes a labeled chromatogram of the gradient separation of a tryptic digest of bovine cytochrome c (p/n: 186006371) using eluents that contain 0.1% formic acid. You can purchase the same protein digest test mixture to ensure the proper performance of your Peptide CSH C₁₈, 130 Å Column.

Separation of 13 Residue Peptides at Various Sample Loads

Offered in many particle sizes and column configurations, our peptide columns are well-suited for various laboratory-scale purification needs.

We tested several peptide columns to observe how they performed when injections were repeated, comparing them with the performance columns B, C, and D made by other manufactures. (Retention was monitored to determine column lifetime.)

Peptide Preparative Column Selection Guide

	OBD Prep Columns, 5 and 10 µm										
	130 Å and 300 Å										
I.D. (mm)	Length (mm)	µmol of a Single Peptide	Weight of a Single Peptide (mg)	Typical Flow Rate (mL/min)							
10	50	0.25-5	0.5–10	4.5-9							
10	100	0.25-5	0.5-10	4.5-9							
10	150	0.25-5	0.5–10	4.5-9							
10	250	0.25-5	0.5-10	4.5-9							
19	50	1–18	2.0-36	16-32							
19	100	1–18	2.0-36	16-32							
19	150	1–18	2.0-36	16-32							
19	250	1–18	2.0-36	16-32							

	OBD Prep Columns, 10 µm								
130 Å and 300 Å									
I.D. (mm)	Length (mm)	Typical Flow Rate (mL/min)							
30	50	2.5-25	5-100	40-80					
30	100	2.5-25	5-100	40-80					
30	150	2.5–25	5-100	40-80					
30	250	2.5-25	5-100	40-80					

Peptide Packing Material in OBD Columns for Maximum Chemical and Physical Stability

When columns fail, they do so both physically and chemically. For columns used with low-pH mobile phases, the usual cause of abbreviated column life is hydrolysis of the bonded phase, which manifests itself as significant changes in peptide retention. The BEH Technology Columns incorporate proprietary procedures for bonding and end-capping that yield stable bonded phases. In low-pH stability tests, BEH C₁₈ columns showed only minimal retention loss. Waters patented Optimum Bed Density (OBD[™]) Technology, developed to create packed beds that are the most stable of any available, regardless of manufacturer, ensures the physical stability of these columns. Visit www.waters.com/OBD for details about OBD Technology.

Ordering Information

BEH C ₁₈ , 130 Å	Particle S	ize: 1.7 µm
	Dimension	P/N
	2.1 × 5 mm	186003975*
	2.1 × 50 mm	186003554
	2.1 × 100 mm	186003555
	2.1 × 150 mm	186003556
BEH C ₁₈ , 300 Å	Particle S	ize: 1.7 µm
	1.0 × 50 mm	186005592
	1.0 × 100 mm	186005593
	1.0 × 150 mm	186005594
	2.1 × 5 mm	186004629*
	2.1 × 50 mm	186003685
	2.1 × 100 mm	186003686
	2.1 × 150 mm	186003687

ACQUITY UPLC Peptide BEH C₁₈ Guards and Columns

ACQUITY UPLC Peptide BEH C₁₈ Method Validation Kits*

BEH C ₁₈ , 130 Å	Particl	Particle Size: 1.7 µm				
	Dimension	P/N				
	2.1 × 100 mm	186004896				
	2.1 × 150 mm	186006516				
BEH C ₁₈ , 300 Å	Particl	e Size: 1.7 µm				
	2.1 × 100 mm	186004897				
	2.1 × 150 mm	186006517				

*Each Method Validation Kit contains 3 columns, each from a different batch.

*VanGuard Pre-column, 3/pk.

XBridge Peptide BEH C18 Method Validation Kits*

BEH C ₁₈ , 130 Å	Particle Si	Particle Size: 2.5 µm			ze: 3.5 µm	Particle Size: 5 µm		
	Dimension	P/N		Dimension	P/N		Dimension	P/N
	2.1 × 150 mm	186009002		4.6 × 100 mm	186004904		4.6 × 100 mm	186005463
	3 × 150 mm	186009003						
	4.6 × 150 mm	186009004						
BEH C ₁₈ , 300 Å	Particle Si	ze: 2.5 µm		Particle Siz	ze: 3.5 µm		Particle S	ize: 5 µm
	2.1 × 150 mm	186009079		4. × 100 mm	186004905		4.6 × 100 mm	186005464
	3 × 150 mm	186009080						
	4.6 × 150 mm	186009081						

*Each Method Validation Kit contains 3 columns, each from a different batch.

XBridge Peptide BEH C18 VanGuard Cartridges, 3/pk

BEH C ₁₈ , 130 Å	Partic	e Size: 2.5 µm
	Dimension	P/N
	2.1 × 5 mm	186008988
	3.9 × 5 mm	186008989
BEH C ₁₈ , 300 Å	Partic	e Size: 2.5 µm
	2.1 × 5 mm	186009077
	3.9 × 5 mm	186009078

XBridge Peptide BEH $C_{\rm 18}$ Guards and Columns

BEH C ₁₈ , 130 Å	Particle Si	ze: 2.5 µm	Particle	Size: 3.5 µm	Particle	Size: 5 µm	Particle S	ize: 10 µm
	Dimension	P/N	Dimension	P/N	Dimension	P/N	Dimension	P/N
	2.1 × 50 mm	186008979	1.0 × 50 mm	186003560	1.0 × 50 mm	186003571	4.6 × 50 mm	186003648
	2.1 × 100 mm	186008980	1.0 × 100 mm	186003561	1.0 × 100 mm	186003572	4.6 × 100 mm	186003649
	2.1 × 150 mm	186008981	1.0 × 150 mm	186003562	1.0 × 150 mm	186003573	4.6 × 150 mm	186003650
	$3 \times 50 \text{ mm}$	186008982	2.1 × 50 mm	186003563	$2.1 \times 50 \text{ mm}$	186003574	$4.6 \times 250 \text{ mm}$	186003651
	3 × 100 mm	186008983	2.1 × 100 mm	186003564	2.1 × 100 mm	186003575	10 × 10 mm	186004465*,1
	3 × 150 mm	186008984	2.1 × 150 mm	186003565	2.1 × 150 mm	186003576	$10 \times 50 \text{ mm}$	186008194
	4.6 × 50 mm	186008985	2.1 × 250 mm	186003566	2.1 × 250 mm	186003577	10 × 100 mm	186008195
	4.6 × 100 mm	186008986	$4.6 \times 50 \text{ mm}$	186003567	$4.6 \times 50 \text{ mm}$	186003578	10 × 150 mm	186008196
	4.6 × 150 mm	186008987	4.6 × 100 mm	186003568	4.6×100 mm	186003579	10 × 250 mm	186008197
			4.6 × 150 mm	186003569	4.6 × 150 mm	186003580	19 × 10 mm	186004464*,2
			4.6 × 250 mm	186003570	4.6 × 250 mm	186003581	19 × 50 mm	186003656
					$10 \times 10 \text{ mm}$	186004469*,1	19 × 150 mm	186003657
					10 × 50 mm	186008186	19 × 250 mm	186003658
					10 × 100 mm	186008187	30 × 10 mm	186006880*,3
					10 × 150 mm	186008188	30 × 50 mm	186003659
					10 × 250 mm	186008189	30 × 100 mm	186003660
					19 × 10 mm	186004468*,2	30 × 150 mm	186003661
					19 × 50 mm	186003586	30 × 250 mm	186003662
					19 × 100 mm	186003587		
					19 × 150 mm	186003945		

BEH C ₁₈ , 300 Å	Particle Si	ze: 2.5 µm	Particle Siz	ze: 3.5 µm	Particle	Size: 5 µm	Particle S	ize: 10 µm
	2.1 × 5 mm	186009077	1.0 × 50 mm	186003604	1.0 × 50 mm	186003615	4.6 × 50 mm	186003663
	2.1 × 50 mm	186009068	1.0 × 100 mm	186003605	1.0 × 100 mm	186003616	4.6 × 100 mm	186003664
	2.1 × 100 mm	186009069	1.0 × 150 mm	186003606	1.0 × 150 mm	186003617	4.6 × 150 mm	186003665
	2.1 × 150 mm	186009070	2.1 × 50 mm	186003607	2.1 × 50 mm	186003618	4.6 × 250 mm	186003666
	3.0 × 50 mm	186009071	2.1 × 100 mm	186003608	2.1 × 100 mm	186003619	10 × 10 mm	186004467*,
	3.0 × 100 mm	186009072	2.1 × 150 mm	186003609	2.1 × 150 mm	186003620	10 × 50 mm	186008198
	3.0 × 150 mm	186009073	2.1 × 250 mm	186003610	2.1 × 250 mm	186003621	10 × 100 mm	186008199
	4.6 × 50 mm	186009074	4.6 × 50 mm	186003611	$4.6 \times 50 \text{ mm}$	186003622	10 × 150 mm	186008200
	4.6 × 100 mm	186009075	4.6 × 100 mm	186003612	4.6 × 100 mm	186003623	10 × 250 mm	186008201
	4.6 × 150 mm	186009076	4.6 × 150 mm	186003613	4.6 × 150 mm	186003624	19 × 10 mm	186004466*;
			4.6 × 250 mm	186003614	4.6 × 250 mm	186003625	19 × 50 mm	186003671
					10 × 10 mm	186004471*,1	19 × 150 mm	186003672
					10 × 50 mm	186008190	19 × 250 mm	186003673
					10 × 100 mm	186008191	$30 \times 50 \text{ mm}$	186003674
					10 × 150 mm	186008192	30 × 100 mm	186003675
					$10 \times 250 \text{ mm}$	186008193	30 × 150 mm	186003676
					19 × 10 mm	186004470*,2	30 × 250 mm	186003677
					19 × 50 mm	186003630	30 × 10 mm	186006882*
					19 × 100 mm	186003631		
					19 × 150 mm	186003946		

56

*Guard Cartridge. ¹ Requires 10 × 10 mm Prep Guard Holder, p/n: 289000779. ² Requires 19 × 10 mm Prep Guard Holder, p/n: 186000709. ³ Requires 30 × 10 mm Prep Guard Holder, p/n: 186006912.

ACQUITY UPLC Peptide CSH C18 Columns and Kits

CSH C ₁₈ , 130 Å	F	Particle Size: 1.7 µm							
	Dimension	Column P/N	Kit P/N ¹						
	1.0 × 50 mm	186006933	176003061						
	$1.0 \times 100 \text{ mm}$	186006934	176003062						
	1.0 × 150 mm	186006935	176003063						
	2.1 × 50 mm	186006936	176003064						
	2.1 × 100 mm	186006937	176003065						
	2.1 × 150 mm	186006938	176003066						

¹Kit contains Peptide CSH C₁₈, 130 Å Column plus one vial of Cytochrome c Digestion Standard, p/n: 186006371.

ACQUITY UPLC Peptide CSH C_{18} VanGuard Pre-Column, 3/pk

CSH C ₁₈ , 130 Å	Р	article Size: 1.7 µr	n		
	Dimension	Column P/N	Kit P/N ¹		
	2.1 × 5 mm	186006939	176003067		
¹ Kit contains Peptide CSH C ₁₈ , 130 Å Column plus one vial of Cytochrome c					

Digestion Standard, p/n: 186006371.

ACQUITY UPLC Peptide CSH C18 Method Validation Kits*

CSH C ₁₈ , 130 Å	F	Particle Size: 1.7 µn	ı
	Dimension	Column P/N	Kit P/N ¹
	2.1 × 150 mm	186006940	176003068

*Kit contains 3 columns, each from a different batch.

 $^{\rm 1}$ Kit contains Peptide CSH C $_{\rm 18}$, 130 Å Column plus one vial of Cytochrome cDigestion Standard, p/n: 186006371.

XSelect Peptide CSH C₁₈ Guards, Columns, and Kits

CSH, C ₁₈ , 130 Å	Pa	rticle Size: 2.5 µ	m	Ра	rticle Size: 3.5 µ	m	Particle	e Size: 5 µm
	Dimension	Column P/N	Kit P/N ¹	Dimension	Column P/N	Kit P/N ¹	Dimension	Column P/N (1/pk)
	2.1 × 50 mm <i>XP</i>	186006941	176003069	$2.1 \times 10 \text{ mm}^{2,4}$	186006954	176003081	4.6 × 50 mm	186007076
	2.1 × 100 mm XP	186006942	176003070	2.1 × 50 mm	186006950	176003077	4.6 × 100 mm	186007077
	2.1 × 150 mm XP	186006943	176003071	2.1 × 100 mm	186006951	176003078	4.6 × 150 mm	186007078
	4.6 × 50 mm XP	186006946	176003074	2.1 × 150 mm	186006952	176003079	10 × 10 mm*	186007015
	4.6 × 100 mm XP	186006947	176003075	$4.6 \times 20 \text{ mm}^{3,4}$	186006958	176003085	10 × 50 mm*	186008264
	4.6 × 150 mm XP	186007038	176003093	4.6 × 50 mm	186006955	176003082	10×100 mm*	186008265
				4.6 × 100 mm	186006956	176003083	10 × 150 mm*	186008266
				4.6 × 150 mm	186006957	176003084	10 × 250 mm*	186008267
							19 × 10 mm*	186007019**
							19 × 50 mm*	186007022
							19 × 100 mm*	186007020
							19 × 150 mm*	186007021
							19 × 250 mm*	186007031
							30 × 50 mm*	186007026
							30×100 mm*	186007025
							30 × 150 mm*	186007023
							30 × 250 mm*	186007024
							50 × 50 mm*	186007030
							50 × 100 mm*	186007027
							50 × 150 mm*	186007028
							50 × 250 mm*	186007029

* OBD Column. **Requires 19 × 10 mm Cartridge Holder, p/n: 186000709.

¹ Kit contains Peptide CSH C₁₈, 130 Å Column plus one vial of Cytochrome c Digestion Standard, p/n: 186006371.

² Requires 2.1 × 10 mm Universal Sentry Guard Holder, p/n: WAT097958.

³ Requires 4.6 × 20 mm Universal Sentry Guard Holder, p/n: WAT046910.

4 2/pk.

XSelect Peptide CSH C18 Columns and Method Validation Kits*

CSH C ₁₈ , 130 Å		Particle Size: 2.5 µm			Particle Size: 3.5 µm				
	Dimension	Column P/N	Kit P/N ¹	Dimension	Column P/N	Kit P/N ¹			
	2.1 × 100 mm	186006945	176003073	2.1 × 100 mm	186006953	176003080			
	4.6 × 100 mm	186006966	176003076	4.6 × 100 mm	186006959	176003086			

*Each Method Validation Kit contains three columns, each from a different batch.

¹ Kit includes three Peptide CSH C₁₈, 130 Å columns, each from a different batch; and three vials of Cytochrome c Digestion Standard, p/n: 186006371.

XSelect Peptide CSH C18 VanGuard Cartridges,* 3/pk

CSH, C ₁₈ , 130 Å	Pa	rticle Size: 2.5 µm	I			
	Dimension Column P/N Kit P/N					
	2.1 × 5 mm	186006944	176003072			
*Requires VanGuard Cartridge Universal Holder, p/n: 186007949.						

¹ Kit includes three Peptide CSH C₁₈, 130 Å Guard Columns and one vial of Cytochrome c Digestion Standard, p/n: 186006371.

ACQUITY UPLC Peptide HSS T3 Columns and Kits

HSS T3, 100 Å	Particle Size: 1.8 µm					
	Dimension	Column P/N	Kit P/N ¹			
	1.0 × 50 mm	186008751	176003992			
	1.0 × 100 mm	186008752	176003993			
	1.0 × 150 mm	186008753	176003994			
	2.1 × 50 mm	186008754	176003995			
	2.1 × 100 mm	186008755	176003996			
	2.1 × 150 mm	186008756	176003997			

¹ Kit includes Peptide HSS T3 Column plus one vial of Cytochrome *c* Digestion Standard, p/n: 186006371.

Purification and Isolation Cartridge Holders and Replacement O-rings

Description	Qty.	P/N
10 × 10 mm Cartridge Holder	1/pk	289000779
19 × 10 mm Cartridge Holder	1/pk	186000709
Replacement 0-ring 7.8 mm	2/pk	700001019
Replacement 0-ring 10 mm	2/pk	700001436

ACQUITY UPLC Peptide HSS T3 VanGuard Pre-Column, 3/pk

00 Å	Particle Size: 1.8 µm Dimension P/N	
	Dimension	P/N
	2.1 × 5 mm	186008757

ACQUITY UPLC Peptide HSS T3 Method Validation Kits*

3, 100 Å	Particle Siz	:e: 1.8 µm
	Dimension	P/N
	2.1 × 150 mm	186008782

*Each Method Validation Kit contains 3 columns, each from a different batch.

XSelect Peptide HSS T3 Columns

HSS T3, 100 Å		Particle Size: 2.5 µm			Particle Size: 5 µm			
	Dimension	Column P/N	Kit P/N ¹	Dimension	Column P/N	Kit P/N ¹		
	2.1 × 50 mm	186008758	176003998	2.1 × 100 mm	186008775	176004017		
	2.1 × 100 mm	186008759	176003999	2.1 × 150 mm	186008776	176004018		
	2.1 × 150 mm	186008760	176004006	4.6 × 100 mm	186008779	176004020		
	4.6 × 50 mm	186008762	176004007	4.6 × 150 mm	186008780	176004021		
	$4.6 \times 100 \text{ mm}$	186008763	176004008					
	4.6 × 150 mm	186008764	176004009					

¹Kit includes Peptide HSS T3 Column plus one vial of Cytochrome *c* Digestion Standard, p/n:186006371.

XSelect Peptide HSS T3 VanGuard Cartridges, 3/pk*

HSS T3, 100 Å	Particle Si	ze: 2.5 µm	Particle Size: 5 µm		
	Dimension	P/N	Dimension	P/N	
	2.1 × 5 mm	186008761	2.1 × 5 mm	186008777	
	$3.9 \times 5 \text{ mm}$	186008765	$3.9 \times 5 \text{ mm}$	186008781	

*Requires a VanGuard Cartridge Universal Holder, p/n: 186007949.

XSelect Peptide HSS T3 Method Validation Kits*

HSS T3, 100 Å	Particle Size: 2.5 µm			Particle S	ize: 5 µm
	Dimension	P/N		Dimension	P/N
	2.1 × 150 mm	186008783		2.1 × 150 mm	186008787
	4.6 × 150 mm	186008784		4.6 × 150 mm	186008788

*Each Method Validation Kit contains 3 columns, each from a different batch.

CATION-EXCHANGE PEPTIDE AND POLYPEPTIDE SEPARATIONS

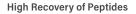
For most analytical and preparative peptide separations, cation-exchange chromatography is used mainly when alternative selectivity is required. In some large-scale purifications, cation exchange can take on a more central role. In these cases, cation exchange is frequently used as the first step in the separation, followed by a secondary purification step using reversedphase methods.

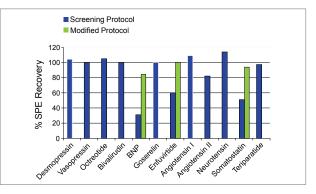
Waters offers BioSuite packings for cation-exchange separations. These packings are useful both for analytical and preparative work. They are based on rigid, hydrophilic polymethacrylate particles with large 1000 Å pores. The naturally hydrophilic polymer reduces non-specific adsorption, resulting in better recovery of peptide/polypeptide mass and bioactivity. These packings are stable in the pH range of 2–12.

Protein-Pak SP HR 8 and 15 μm packing material is available in pre-packed glass columns.

THERAPEUTIC PEPTIDE METHOD DEVELOPMENT KIT

The Therapeutic Peptide Method Development Kit was developed to simplify the process of sample preparation and LC method development for the analysis of therapeutic peptides in plasma. The kit contains an Oasis Peptide µElution Method Development Plate, a Peptide BEH C₁₈, 300 Å reversed-phase column, and the detailed screening protocol which was used to generate the data shown in this publication.


In addition, a comprehensive method development training seminar has been created which describes all aspects of the method development process from the MS conditions to the final validation of a method for the extraction of the therapeutic peptide desmopressin from human plasma.


Although big progress has been made in sample pretreatment over the last years, there are still considerable limitations when it comes to overcoming complexity and dynamic range problems associated with peptide analyses from biological matrices. We focus on techniques which can be employed prior to liquid chromatography coupled to mass spectrometry for peptide detection and identification.

The peptide columns are specifically QC tested with a cytochrome *c* tryptic digest that helps ensure batch-to-batch consistency in validated methods ideally suited for separating a wide range of large and small, acidic and basic, hydrophilic and hydrophobic peptides.

The complexity of samples still far exceeds the capacity of currently available analytical systems, and specific sample preparation remains a crucial part of the analysis in a whole.

For more information, visit www.waters.com/pepkit or contact your local Waters sales office.

The innovative Oasis µElution Plate allows for up to a 15x sample concentration, increasing the possibility of reaching the required sensitivity levels for bioanalytical assays. The low (25 µL) elution volume eliminates the need for evaporation and reconstitution significantly reducing the potential analyte loss due to absorption to the walls of the collection plate and/or chemical instability.

Ordering Information

SPE Vacuum Pump 115 V, 60 Hz

SPE Vacuum Pump 240 V, 50 Hz

Therapeutic Peptide Method Development Kits

Description	Qty/Box	P/N
UPLC Therapeutic Peptide Method Development Kit		176001835
Oasis µElution Method Development Plate	1	186004713
ACQUITY UPLC Peptide BEH C_{18}, 300 Å, 1.7 $\mu m, 2.1 \times 50 \ mm$ Column	1	186003685
96-Well 1 mL Collection Plate and Cap Mat	3	600001043
HPLC Peptide Therapeutic Peptide Method Development Kit		176001836
Oasis µElution Method Development Plate	1	186004713
XBridge Peptide BEH C18, 300 Å, 3.5 $\mu m,$ 2.1 \times 50 mm Column	1	186003607
96-Well 1 mL Collection Plate and Cap Mat	3	600001043
Additional Products (Not Included in Kits)		
Oasis MAX 96-Well µElution Plate	1	186001829
Oasis WCX 96-Well µElution Plate	1	186002499
96-Well 1 mL Collection Plate	50	186002481
Cap Mats for 1 mL Collection Plate	50	186002483
Disposable Reservoir Tray	25	WAT058942
Extraction Manifold for 96-Well Plates	1	186001831
Vacuum Box Gasket Kit (contains foam top gaskets and orange O-rings)	2	186003522

725000417

725000604

1

BIOSUITE HPLC AND UHPLC PEPTIDE ANALYSIS COLUMNS

- Two HPLC and UHPLC column chemistries that provide alternative chemistries for peptide separations
- Designed for maximum resolution of complex digests
- Available in various configurations for LC or LC-MS applications
- Excellent batch-to-batch reproducibility for consistent results
- Uniquely QC tested specifically for peptide mapping using Waters MassPREP Cytochrome c Digestion Standard

BioSuite Peptide Analysis Series

BioSuite PA Series consists of two Waters premier reversedphase column chemistries specifically optimized for peptide mapping from simple to complicated digests.

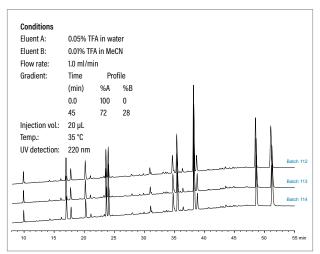
BioSuite C₁₈, 3 µm PA-A

BioSuite C_{18} , 3 µm PA-A is a 100 Å, difunctional bonded, low ligand density, silica-based column.

- Specifically designed for excellent retention of polar peptides
- Ideal choice for LC-MS applications using formic acid (FA) that minimizes ion-suppression
- Excellent performance for traditional HPLC separations using low TFA concentrations (e.g., 0.025% TFA)

BioSuite C₁₈, 3.5 µm PA-B

BioSuite C₁₈, 3.5 μm PA-B is a 300 Å, high-ligand density, monofunctional, silica-based column.


- Outstanding performance when separating complex digests containing hydrophilic, hydrophobic, and basic peptides
- Superior peak shape and capacity for peptide separations using TFA containing eluents (e.g., 0.1% TFA)
- Good choice for the separation of larger peptide fragments generated by some endoproteases (e.g., Lys-C)

Consistent Results Due to Superior Batch-to-Batch Reproducibility

Waters' batch-release protocol includes a tryptic map of cytochrome *c* (using Waters MassPREP Cytochrome *c* Digestion Standard [p/n: 186006371]) which is used to test for reproducibility to retention times and resolution. The three test chromatograms below show the results of the protein digest test for different batches of PA-B material.

Cytochrome c Tryptic Map QC Test

Waters BioSuite C_{18} PA-A and PA-B Columns are QC tested with tryptic digest of cytochrome c (p/n: 186006371) to help ensure batch-to-batch and column-to-column performance consistency.

Ordering Information

BioSuite Peptide Analysis HPLC and UHPLC Columns

BioSuite C ₁₈	Inner Diameter	Length	3 µm PA-A	3.5 µm PA-B
			P/N	P/N
	2.1 mm	50 mm	186002425	186002433
	2.1 mm	100 mm	186002426	186002434
	2.1 mm	150 mm	186002427	186002435
	2.1 mm	250 mm	186002428	186002436
	4.6 mm	50 mm	186002429	186002437
	4.6 mm	100 mm	186002430	186002438
	4.6 mm	150 mm	186002431	186002439
	4.6 mm	250 mm	186002432	186002440

CYTOCHROME c DIGESTION STANDARD

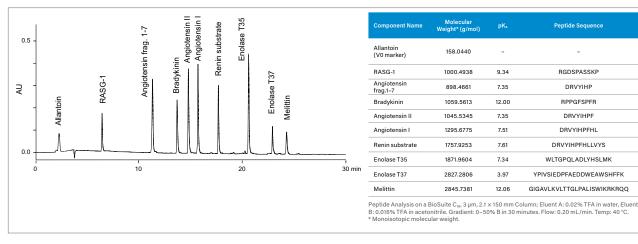
Benchmarking, Method Development, and Troubleshooting

The Cytochrome *c* Digestion Standard was prepared by digesting Bovine Heart Cytochrome *c* (Uniprot #P62894) with sequencing grade trypsin. This standard is recommended for benchmarking system performance and is also used for column QC.

Judarina	Information
raenna	Information
eraoning	mormation

Cytochromo c Digostion Standard

Cytochronie c Digestion Standard	
Description	P/N
Cytochrome c Digestion Standard	186006371


MassPREP PEPTIDE STANDARD

Benchmarking, Method Development, and Troubleshooting

The MassPREP Peptide Standard Mixture contains a void volume (VO) column marker and nine carefully selected peptides with a broad range of polarities and isoelectric points. The MassPREP Standard is useful to test LC columns and systems dedicated to peptide separations.

Baseline HPLC Resolution of Nine Peptides Contained in MassPREP Standard Mixture

Waters offers a variety of carefully formulated and QC-tested peptide standards to help chromatographers confirm the performance of their column and LC system prior to analyses of potentially highly valued samples.

Ordering Information

MassPREP Peptide Standards

Description	Volume	P/N
MassPREP Peptide Mixture	Solid	186002337
One vial with approximately 1 nmol of each:		
Allantoin (Vo Marker); RASG-1, angiotensin frag. 1–7, bradykinin; angiotensin II; angiotensin I, renin substrate, enolase T35, enolase T37, melittin. The peptide standard is useful to test LC columns and systems dedicated to peptide separations.		
MassPREP Peptide Mixture, 5/pk	Solid	186002338
Each vial contains approximately 1 nmol of each:		
Allantoin (Vo Marker); RASG-1, angiotensin frag. 1–7, bradykinin, angiotensin II, angiotensin I, renin substrate, enolase T35, enolase T37, melittin.		

The peptide standard is useful to test LC columns and systems dedicated to peptide separations.

DELTA-PAK HPLC AND UHPLC COLUMNS

Delta-Pak packings, ideal for the separation of peptides, proteins, and natural products, are based on a highly stable, bonded, endcapped 5 or 15 μ m spherical silica. Delta-Pak is available in two different pore size materials (100 Å and 300 Å) with a C₁₈ or C₄ bonded phase.

Synthetic Peptide Separation on Delta-Pak C18 HPLC Column

	Conditions	
	Column:	Delta-Pak C ₁₈ , 300 Å, 5 µm, 3.9 × 150 mm (p/n: WAT011793)
	Sample:	Synthetic peptide-neurotensin (5 mg/mL)
	Injection:	10 µL (50 µg)
	Mobile phase A:	Water with 0.1% trifluoroacetic acid
	Mobile phase B:	Acetonitrile with 0.1% trifluoroacetic acid
	Gradient:	0-2 min, 5% B
		2-27 min, 5-9% B, 30-31 min, 90-5% B
	Flow rate:	1 mL/min
	UV detection:	230 nm
		Mululum
	•	30 min
1		

Waters Delta-Pak C_{18} , 300 Å Columns (available in 5 and 15 µm particle sizes) are well suited for the analysis and lab-scale isolation of synthetic peptide mixtures.

i For more information, visit waters.com/biosep

Delta-Pak Radial Compression Preparative HPLC and UHPLC Column Segments and PrepPak Cartridges*

Delta-Pak C ₁₈ , 100 Å	Particle Size: 15 µm				
-	Dimension	Туре	P/N		
	8×100 mm	Column	WAT025846		
	25 × 10 mm	Guard, 2/pk	WAT038520		
	25 × 100 mm	Column	WAT038506		
	40 × 10 mm	Guard, 2/pk	WAT037842		
	40×100 mm	Column	WAT037688		
Delta-Pak C ₁₈ , 300 Å	8 × 100 mm	Column	WAT025845		
	25 × 10 mm	Guard, 2/pk	WAT038522		
	25 × 100 mm	Column	WAT038507		
	40 × 10 mm	Guard, 2/pk	WAT037845		
	40×100 mm	Column	WAT037692		
Delta-Pak C₄, 100 Å	8 × 100 mm	Column	WAT025848		
	25 × 10 mm	Guard, 2/pk	WAT038524		
	25 × 100 mm	Column	WAT038508		
	$40 \times 10 \text{ mm}$	Guard, 2/pk	WAT037696		
Delta-Pak C₄, 300 Å	25 × 10 mm	Guard, 2/pk	WAT038526		
	25 × 100 mm	Column	WAT038509		
	40 × 10 mm	Guard, 2/pk	WAT037851		
	40 × 100 mm	Column	WAT037700		

*All column segments and cartridges require the appropriate holder/module.

Ordering Information

Delta-Pak Analytical HPLC and UHPLC Columns and Guards

Delta-Pak C ₁₈ , 100 Å	Particle Size: 5 µm					
	Dimension	Туре	P/N			
	3.9 × 20 mm	Guard, 2/pk	WAT0468801			
	3.9 × 20 mm	Guard, 10/pk	WAT0368701			
	3.9 × 150 mm	Column	WAT011795			
Delta-Pak C ₁₈ , 300 Å	2.1 × 150 mm	Column	WAT023650			
	3.9 × 20 mm	Guard, 2/pk	WAT046890 ¹			
	3.9 × 150 mm	Cartridge, 10/pk	WAT036875 ²			
	3.9 × 150 mm	Column	WAT011793			
Delta-Pak C₄, 100 Å	3.9 × 20 mm	Guard, 2/pk	WAT0468751			
	3.9 × 150 mm	Column	WAT011796			
Delta-Pak C4, 300 Å	3.9 × 20 mm	Guard, 2/pk	WAT046885 ¹			
	3.9 × 150 mm	Cartridge, 10/pk	WAT036865 ²			
	3.9 × 150 mm	Column	WAT011794			
Guard-Pak Holder			WAT088141			
Guard-Pak In-line Filter	s, 5/pk		WAT032472			

 1 Requires 3.0 \times 20 mm/4.6 \times 20 mm Universal Sentry Guard Holder, p/n: WAT046910. 2 Requires Guard-Pak Holder, p/n: WAT088141.

Delta-Pak Preparative HPLC and UHPLC Guard Columns

Delta-Pak C ₁₈ , 100 Å	F	Particle Size: 15 μn	n
Della-Fak C ₁₈ , 100 A	Dimension	Туре	P/N
	3.9 × 300 mm	Column	WAT011797
	7.8 × 300 mm	Column	WAT011798
	19 × 300 mm	Column	WAT011799
	$30 \times 300 \text{ mm}$	Column	WAT011800
	$50 \times 300 \text{ mm}$	Column	WAT011801
Delta-Pak C ₁₈ , 300 Å	3.9 × 300 mm	Column	WAT011802
	7.8 × 300 mm	Column	WAT011803
	19 × 300 mm	Column	WAT011804
	$30 \times 300 \text{ mm}$	Column	WAT011805
Delta-Pak C₄, 100 Å	3.9 × 300 mm	Column	WAT011807
	7.8 × 300 mm	Column	WAT011808
	19 × 300 mm	Column	WAT011809
	$30 \times 300 \text{ mm}$	Column	WAT011810
Delta-Pak C4, 300 Å	3.9 × 300 mm	Column	WAT011812
	7.8 × 300 mm	Column	WAT011813
	19 × 300 mm	Column	WAT011814
	30 × 300 mm	Column	WAT011815

SYMMETRY HPLC AND UHPLC COLUMNS

Waters Symmetry[™] reversed-phase, silica-based particles are synthesized using ultrapure organic reagents, resulting in high purity material with very low silanol activity. When combined with the high surface coverage of the bonded phase, outstanding peptide separations and recoveries are possible.

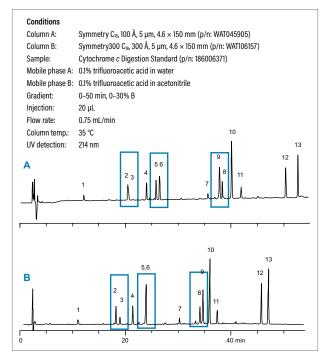
- Superior manufacturing control for consistent batch-to-batch and column-to-column results
- 100 Å and 300 Å pore size offerings for small or larger size peptides
- SymmetryShield Column chemistry offers complementary selectivity to Symmetry Column offerings
- SymmetryPrep Columns provide direct scale up while maintaining resolution

Symmetry300 Columns: The First Columns Specifically Engineered for the Discovery and Development of New Biopharmaceuticals

Symmetry300 Columns are 300 Å reversed-phase columns specifically designed to provide maximum batch-to-batch and column-to-column performance consistency and recovery of protein and peptide applications.

Symmetry300 Columns are offered in two particle sizes (3.5 μ m and 5 μ m) and in two chemistries (C₄ for large peptides and proteins, and C₁₈ for smaller peptides) to address various needs.

Ordering Information


Symmetry300 HPLC and UHPLC Columns

C ₁₈	Particle Size: 3.5 µm			Particle S	ize: 5 µm
	Dimension	P/N		Dimension	P/N
	1.0 × 150 mm	186000185		2.1 × 150 mm	WAT106172
	2.1 × 50 mm	186000187		3.9 × 150 mm	WAT106154
	2.1×100 mm	186000188		4.6 × 50 mm	WAT106209
	2.1 × 150 mm	186000200		4.6 × 150 mm	WAT106157
	4.6 × 50 mm	186000201		4.6 × 250 mm	WAT106151
	4.6 × 75 mm	186000189		19 × 10 mm	186001847
	4.6 × 100 mm	186000190		19 × 50 mm	186001848
	4.6 × 150 mm	186000197		19 × 100 mm	186001849
C ₄	2.1 × 150 mm	186000276		2.1 × 150 mm	186000285
	3.9 × 150 mm	186000277		3.9 × 150 mm	186000286
	4.6 × 50 mm	186000278		4.6 × 50 mm	186000287
	4.6 × 150 mm	186000279		4.6 × 150 mm	186000288
	4.6 × 250 mm	186000280		4.6 × 250 mm	186000289
	19 × 10 mm	186000281			
	19 × 50 mm	186000282			
	19 × 100 mm	186000283	_		

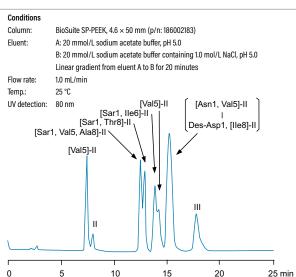
High Recoveries of Peptides and Proteins

The heart of the column is high purity-based deactivated silica. Waters dedicated chromatography chemistry manufacturing plant operates under the stringent standards of cGMP and ISO 9001. The silica used in the manufacture of our Symmetry300 Columns is synthesized using ultrapure organic reagents that yields high purity particles with very low silanol activity. These particles when combined with innovative ligand (i.e., C₄ and C₁₈) bonding techniques helps produce reversed-phase columns with minimal non-desired secondary interactions between bound ligand and biomolecules.

Pore Size Effects on Peptide Selectivity: Comparative Results on Symmetry 100 Å vs. Symmetry300 Columns

Waters Symmetry-based C_{18} Column consists of a 100% porous silica particle containing a C_{18} ligand and endcapping to minimize undesired secondary interactions between the peptide analytes and column chemistry. As indicated by the gradient separation of a cytochrome c tryptic digest, different separation selectivities are obtained on the 100 Å column vs. the 300 Å pore size materials, with Symmetry300 C_{18} being preferred for separation on compounds greater than approximately 10,000 Dalton.

The key to a successful separation is the selection of a column that gives the highest chemistry resolution with maximum peak capacity and recovery.


BIOSUITE CATION-EXCHANGE HPLC COLUMNS

BioSuite SP NP, SP-PEEK, and SP cation-exchange chemistries (CXC)

consists of the "strong" sulfopropyl ligand bonded to a pH stable (i.e., pH 2-12), methacrylic ester-based polymeric resin. The availability of different pore and particle size materials provides chromatographers with the flexibility required to isolate and or characterize peptides based upon minor charge differences. Non-porous (NP) and porous IEX Columns are also available to meet various separations requirements. Speed and superior chromatographic resolution are possible using the non-porous IEX offerings, while porous BioSuite offerings are available for applications requiring greater peptide binding capacity. In addition, BioSuite SP material is offered in PEEK hardware as well as in 21.5 mm I.D. stainless steel "lab-scale" preparative column dimensions.

Separation of Angiotensins on BioSuite SP-PEEK Cation-Exchange HPLC Column

Waters BioSuite SP-PEEK Cation-Exchange Column is well suited for the HPLC or UHPLC analyses of a complex peptide mixture using a gradient of increasing salt concentration.

Ordering Information

BioSuite Cation-Exchange HPLC Columns

Description	Matrix	Pore Size	Exclusion Limit (Daltons) against Polyethylene Glycol	Inner Diameter	Length	Column Volume (mL)	# Approx Protein Binding Capacity Per Pre-Packed Column	P/N
BioSuite SP-PEEK, 7 µm CXC	Polymer	1300 Å	>4,000,000	4.6 mm	50 mm	0.83	58 mg*	186002182
BioSuite SP, 2.5 µm NP CXC	Polymer	N/A	500	4.6 mm	35 mm	0.58	2.9 mg**	186002183
BioSuite SP, 10 µm CXC	Polymer	1000 Å	1,000,000	7.5 mm	75 mm	3.31	132 mg**	186002184
BioSuite SP, 13 µm CXC	Polymer	1000 Å	1,000,000	21.5 mm	150 mm	54.45	2178 mg**	186002185

For best resolution of complex samples, do not exceed 20% of the column's protein binding capacity.

* Data generated with gamma globulin

** Data generated with hemoglobin.

BioResolve SCX mAb Columns

BioResolve SCX mAb Columns for the LC analysis of mAb charge variants as well as other biopharmaceutical therapeutics. **waters.com/bioresolve**

ADDITIONAL PEPTIDE CONSUMABLES

MassPREP Protein Digestion Standards

The MassPREP Protein Digestion Standards are prepared under strict quality control procedures and contain no undigested standard proteins, trypsin, or other hydrophilic components. Test results from each batch of digestion standards are provided on an available Certificate of Analysis report.

Ordering Information

MassPREP Digestion Standards

Description	Volume	P/N
Yeast enolase	Solid	186002325
Phosphorylase b	Solid	186002326
Bovine hemoglobin	Solid	186002327
Yeast alcohol dehydrogenase (ADH)	Solid	186002328
Bovine serum albumin (BSA)	Solid	186002329
Cytochrome c		186006371
MassPREP Digestion Standard Kit contains (1) of 186002325, 186002326, 186002327, 186002328, 186002329		186002330

NIST Digestion Standards

A line of standards based off the NIST Reference Material 8671 (NIST mAb), a humanized IgG1k expressed from a murine cell line.

Ordering Information

NIST Digestion Standards

Description	P/N
mAb Tryptic Digestion Standard	186009126
mAb Subunit Standard	186008927

Note: mAb Charge Variant Standard (p/n: 186009065) is also available and it is based on the same NIST mAb Reference Material 8671.

QuanRecovery Vials and Plates with MaxPeak HPS

Designed for large molecule LC-MS scientists who need the ultimate in recovery, sensitivity, and repeatability.

- Reduce sample losses due to non-specific binding and ionic interactions
- Autosampler-ready formats with low residual volumes enable improved utilization of small sample volumes

MaxPeak[™] High Performance Surfaces are innovative technologies designed to increase analyte recovery, sensitivity, and reproducibility by minimizing analyte/surface interactions that can lead to sample losses.

Ordering Information

QuanRecovery Vials and Plates with MaxPeak HPS

Description	P/N
QuanRecovery™ with MaxPeak HPS 300 µL vials, 25/pk	186009242
QuanRecovery with MaxPeak HPS 300 µL vials, 100/pk	186009186
Combination Pack: QuanRecovery with MaxPeak HPS vials package (p/n: 186009186) with pre-slit PTFE silicone cap and septum, 100/pk	176004434
QuanRecovery with MaxPeak HPS 700 µL 96-well plates, 25/pk	186009184
QuanRecovery with MaxPeak HPS 700 µL 96-well plates, 5/pk	186009185

Quantitative Peptide Standards

Sets of standards specifically designed, formulated, and quality controlled for quantitative peptide analysis.

- Quantitative peptide retention standard
- Hi3 Phos B and E. coli standards
- SILAC Hi3 Phos B and E. coli standards

Ordering Information

Quantitative Peptide Analysis Standards

Quantitative Peptide Analysis Standards	
Description	P/N
Hi3 Phosphorylase B Standard The Hi3 Phos B standard is primarily intended for use with the Hi3 quantification method for MS ^E proteomics data processed with ProteinLynx Global SERVER for samples of microbial origin. It may also be used in the evaluation and benchmarking of proteomic LC-MS systems comprised of nanoACQUITY [™] UPLC and SYNAPT and Xevo time-of-flight mass spectrometers. The Hi3 Phos B standard is intended for samples of microbial origin. It is a quantitative standard comprised of the top six ionizing peptides in the rabbit phosphorylase B protein. Recommended at -20 °C.	186006011
Hi3 <i>E. coli</i> Standard	186006012
The Hi3 <i>E. coli</i> standard is primarily intended for use with the Hi3 quantification method for MS ^E proteomics data processed with ProteinLynx Global Server for samples of microbial origin. It may also be used in the evaluation and benchmarking of proteomic LC-MS systems comprised of nanoACQUITY UPLC and SYNAPT and Xevo time-of-flight mass spectrometers. The Hi3 <i>E. coli</i> standard is intended for samples of animal origin. It is a quantitative standard comprised of the top six ionizing peptides in the <i>E. coli</i> ClpB protein.	
SILAC Hi3 Phos B Standard	186007083
The SILAC Hi3 Phos B standard is formulated from the same specialized set of the top six ionizing peptides of the rabbit phosphorylase B protein that is contained in the non-labeled counterpart: Hi3 Phos B standard (p/n: 186006011). The main difference is that this standard is produced to have a heavy labeled reference on the lysine (K) or arginine (R) end of the peptide.	
SILAC Hi3 <i>E. coli</i> Standard	186007084
The SILAC Hi3 <i>E. coli</i> standard is formulated from the same specialized set of the top six ionizing peptides of the <i>E. coli</i> ClpB protein that is contained in the non-labeled counterpart: Hi3 <i>E. coli</i> standard (p/n: 186006012). The main difference is that this standard is produced to have a heavy labeled reference on the lysine (K) or arginine (R) end of the peptide.	
Quantitative Peptide Retention Standard	186006555
The Quantitative Peptide Retention Standard is a quantitative standard that is useful during the calibration, development, and troubleshooting of chromatographic separations ensuring confidence in results. This standard is rigorously QC tested for purity and quantitative formulation and is specifically designed with the following features:	
 Peak retention for chromatographic reproducibility UV absorptivity for signal reproducibility Low- to high-mass range for MS Water solubility 	
Truntia like pontides for pontide manning studies	

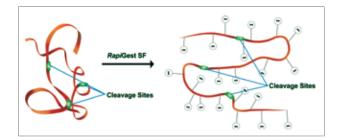
Tryptic-like peptides for peptide mapping studies

MassPREP Phosphopeptide Standards

The MassPREP Phosphopeptide Standards give you greater control over sample preparation, with the option to use pure peptides or to define phosphopeptides to unmodified peptide ratios.

Ordering Information

MassPREP	Phosphopeptide	Standards
----------	----------------	-----------


Description	Volume	P/N
MassPREP Phosphopeptide Standard Enolase	Solid	186003285
Four yeast enolase derived phosphorylated peptides: T18 1P, T19 1P, T43 1P, T43 2P. Used to optimize phosphopeptide detection in LC-MS, LC/UV, and MALDI-MS.		
MassPREP Enolase Digest with Phosphopeptides Mix	Solid	186003286
Yeast enolase spiked with four yeast enolase derived phosphorylated peptides: T18 1P, T19 1P, T43 1P, T43 2P. A more complex mixture used to optimize and troubleshoot phosphopeptide detection in LC-MS, LC/UV, and MALDI-MS.		
MassPREP Phosphopeptide Sample Kit—Enolase		186003287
Kit allows one to mix and optimize a complex standard per specific applications. Kit contains two vials:		
MassPREP enolase digestion standard	Solid	186002325
MassPREP phosphopeptide standard enolase	Solid	186003285
MassPREP Enhancer (5 vials)	Solid	186003863
Five 500 mg MassPREP Enhancer. A component in the MassPREP Phosphopeptide Enrichment Kit.		186003864
MassPREP Phosphopeptide Enrichment Kit		186003864
MassPREP phosphopeptide enrichment µElution plate	Solid	186003820
MassPREP enhancer	Solid	186003863
MassPREP enolase digest with phosphopeptides mix		186003286

RapiGest SF Protein Digestion Surfactant

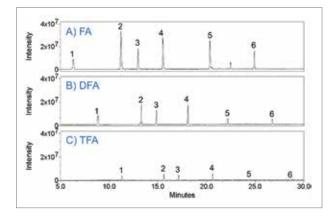
RapiGest SF (surfactant) radically enhances protein enzymatic digestions in terms of speed and percent recovery. RapiGest SF is a patented anionic surfactant that accelerates the production of peptides generated by proteases, such as trypsin, Asp-N, Glu-C, and Lys-C. Many hydrophobic proteins are resistant to proteolysis because their cleavage sites are inaccessible to endoproteases. RapiGest SF, a mild denaturant, helps solubilize and unfold proteins making them more amenable to cleavage without

denaturing or inhibiting common proteolytic enzymes.

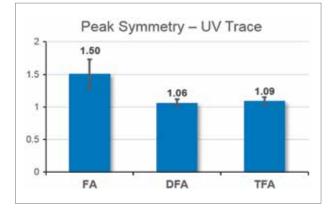
How RapiGest SF Works

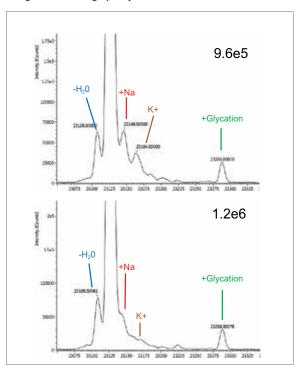
Ordering Information

RapiGest SF Surfactant


Description	P/N
RapiGest SF1 mg vial	186001860
RapiGest SF1 mg vial (5/pk)	186001861
RapiGest SF 3 mg vial	186008090
RapiGest SF 10 mg vial	186002123
RapiGest SF 50 mg vial	186002122

IonHance Difluoroacetic Acid


Mobile-phase additives (i.e., strong acids or buffers) are commonly used in liquid chromatography (LC) to improve analyte retentivity and peak shape. For MS applications, high-purity, mobile-phase additives are necessary to reduce background contribution and to ensure data quality. IonHance[™] modifiers can be used for LC and LC-MS techniques, such as reversed-phase separations of proteins, peptides, and small molecules. Purified to achieve low metal content and high-quality standards, IonHance modifiers can improve sensitivity, retentivity, and peak shape of the toughest separations.


Waters IonHance Difluoroacetic Acid is an MS-grade mobile-phase additive and has been purified to achieve the low metal (sodium and potassium) content that is necessary for MS compatibility. Each vial of the standard is provided in an approximate 1 mL quantity and is contained within a high quality, chemically resistant PFA vial.

Improved MS signal over TFA

MS-grade offers high purity and low salt

Ordering Information

IonHance Difluoroacetic Acid

Description	P/N
IonHance Difluoroacetic Acid, 1 mL, 1/pk	186009201
IonHance Difluoroacetic Acid, 1 mL, 6/pk	176004415
IonHance Difluoroacetic Acid Mobile-Phase Kit, 1 mL, 2/pk with Certified LDPE Container, 100 mL, 2/pk	176010000

GlycoWorks RapiFluor-MS N-Glycan Kits

Reduce complicated, time consuming sample preparation

- Increased fluorescence quantification and supreme mass spectral response
- One label that provides valuable information from characterization to routine monitoring
- Simple to follow protocols with detailed tips and tricks provided for adaptation
- The ability to easily train non-glycan experts
- An experimentally derived library to help with data analysis
- Automation-designed, sample preparation kits and scripts

waters.com/rapifluorms waters.com/automate

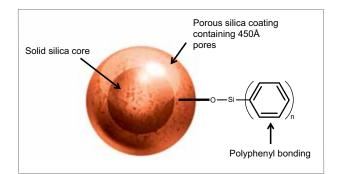
Protein Analysis

Contents

Protein Analysis	71
Intact Protein and mAb Subunit Analysis	71
BioResolve RP mAb Polyphenyl Columns	71
mAb Subunit Standard	
Protein BEH C4, 300 Å Columns	
QuanRecovery Vials and Plates with MaxPeak HPS	77
MassPREP Protein Standard Mix	79
Protein-Pak Hi Res HIC Columns and HIC Protein Standard	
BioSuite Hydrophobic-Interaction Chromatography (HIC) HPLC Columns	
ACQUITY UPLC Glycoprotein BEH Amide, 300 Å Columns	82
SEC Aggregate Analysis	
Aggregate Analysis	
Insulin HMWP HPLC Columns	
XBridge Protein BEH SEC, 125 Å, 200 Å, and 450 Å Columns	
and Protein Standard Test Mixtures	
BEH SEC Protein Standards	
BioSuite Size-Exclusion (SEC) HPLC Columns	
Protein-Pak and Shodex Size-Exclusion HPLC Columns	
Symmetry300 HPLC and UHPLC Columns	97
Charge Variant and Ion-Exchange Analysis	
BioResolve SCX mAb Columns	
mAb Charge Variant Standard	
VanGuard FIT Cartridge	
BioResolve CX pH Buffers	
IonHance CX-MS pH Buffers	
Protein-Pak Hi Res Ion-Exchange (IEX) Columns for ACQUITY UPLC Applications	
Ion-Exchange Standards	
BioSuite Ion-Exchange HPLC Columns	
Protein-Pak PW Series Columns	
Protein-Pak High Resolution (HR) Ion-Exchange Glass Columns	
Advanced Purification (AP) Glass Columns	
AccellPlus Ion-Exchange Packings	112
AccellPlus Sep-Pak Cartridges	112
AccellPlus PrepPak Cartridges (47 x 300 mm)	112
AccellPlus Ion-Exchange Bulk Packings	
Protein-Pak Affinity Columns	
BioSuite pC18 pPhenyl Reversed-Phase Chromatography (RPC) HPLC Columns	116

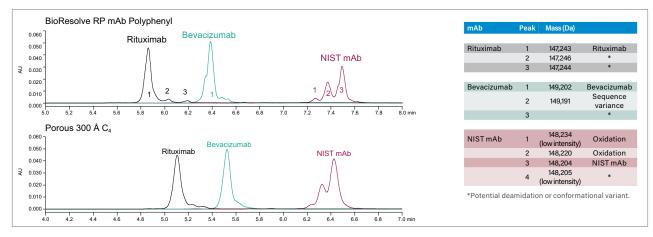
Protein Analysis

The development and successful commercialization of protein-based biopharmaceuticals and diagnostic reagents frequently depends on the ability to adequately characterize these complex biomolecules. Waters' columns and methods can help solve your protein separation and characterization challenges. Waters technology utilizes:


- Reversed-phase
- Hydrophilic-interaction for ADCs
- HILIC for large molecules
- SEC for aggregate analysis
- Ion-exchange and charge variant

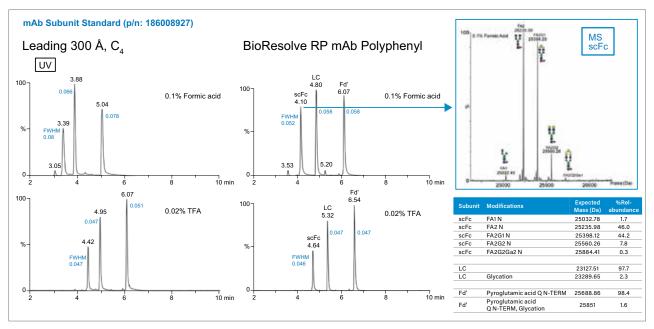
These orthogonal separation techniques help provide the critical characterization data and isolated material required to produce the next generation drugs.

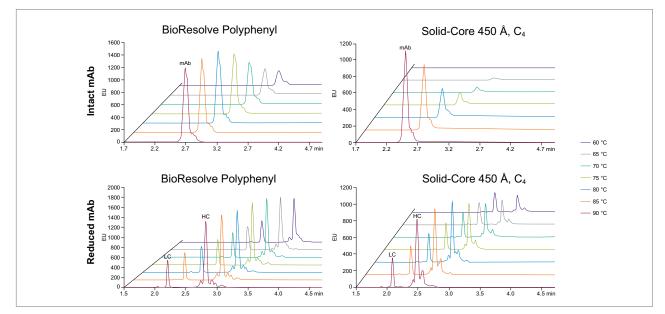
INTACT PROTEIN AND mAb SUBUNIT ANALYSIS


BioResolve RP mAb Polyphenyl Columns

Advances in the LC-MS analysis of biotherapeutic proteins have enabled the analysis at the intact protein and protein subunit level compared to use of peptide mapping protocols. The BioResolve[™] RP mAb Columns and VanGuard[™] Cartridges were purposely designed for high quality LC or LC-MS analyses of intact monoclonal antibodies (mAbs), mAb subunits, and antibody drug conjugates (ADCs) using reversed-phase chromatography. This capability was made possible using silica-based, solid core particles containing a well-defined, 450 Å pore coating and polyphenyl ligand bonding.

A schematic representing the particle and bonded phase of a BioResolve RP mAb Polyphenyl, 450 Å, 2.7 μm Column.

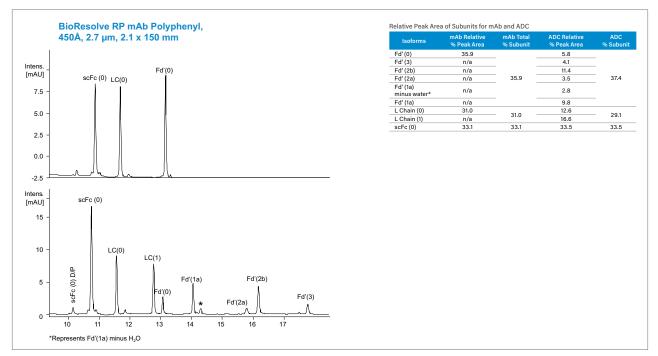

- Improved resolution for increased quantitation accuracy
- Less injection-to-injection carryover for increased confidence
- Lessened dependence on temperature for minimizing protein degradation
- Amenability to HPLC, UHPLC, and UPLC for use across different laboratories
- LC-MS compatibility and lessened ion pairing dependence for higher quality MS data
- Batch-to-batch consistency ensured by QC testing with the mAb Subunit Standard


Improved Separation Selectivity, Increased Quantitation Accuracy and Enhanced MS Data

Overlay of reversed-phase gradient separation of three different antibodies. The BioResolve RP mAb Polyphenyl Column provides the highest resolution as compared to a leading C₄, 300 Å column in these LC-MS analyses. Masses and potential minor peak identifications are shown in the table. Note: The tentative identifications shown were determined solely on the mass differences against the main peak. Additional testing (e.g., MS- MS) is required to confirm identifies.

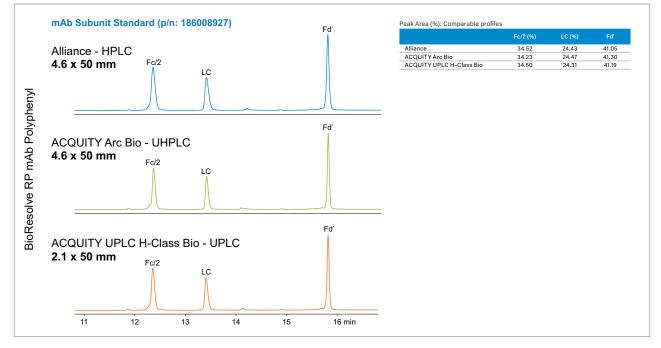
High-Quality MS Data without Adverse Peak Tailing

The ability to obtain acceptable reversed-phase separations in MS-compatible eluents (e.g., 0.1% FA or 0.02% TFA) is an important performance criteria when selecting an appropriate column for these applications. Different than several tested columns (complete data not shown), acceptable LC-MS gradient separations can be achieved with the BioResolve RP mAb Polyphenyl Column using various mobile phases.



Native mAb (top) vs. Reduced Panitumumab (bottom) Recoveries at Different Gradient Separation Temperatures

The ability to recover proteins from reversed-phase gradient separations can be affected by the separation temperature. While higher temperatures are frequently required to obtain acceptable recoveries, these same on-column high temperatures can cause sample degradation and potential misinformation. Compared to several tested columns (complete data not shown), acceptable gradient separations are possible using lower temperatures on the BioResolve RP mAb Polyphenyl Column.

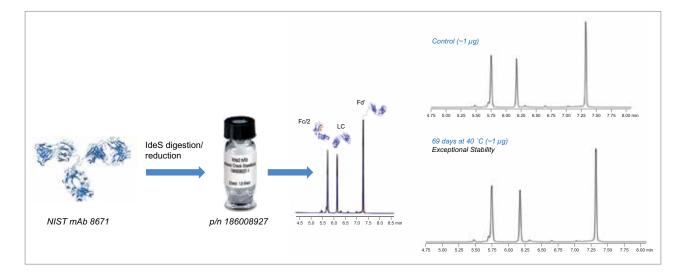

Bobály, B.; Lauber, M.; Beck, A.; Guillarme, D.; Fekete, S. Utility of a high coverage phenyl-bonding and wide-pore superficially porous particle for the analysis of monoclonal antibodies and related products. J. Chromatogr. A, submitted.

Outstanding Component Resolution and Recovery from IdeS Digested Unconjugated mAbs versus Conjugated (ADC) Species

A comparison of an unconjugated mAb versus an antibody drug conjugate showing full recovery of the Fd', LC, and Fc subunits/domains (with and without conjugation). Similar peak areas are recovered from scFc, LC, and Fd' in the ADC vs. the mAb.

Smith, J.; Friese, O.; Rouse, J.; Lauber, M.; Nguyen, J.; Jayaraman, P. High Resolution Chromatography – Mass Spectrometry with a Novel Phenyl RPLC Column for Heightened Characterization of Hydrophobic Monoclonal Antibodies and Antibody Drug Conjugates. WCBP, Washington, DC, January 30-February 1, 2018.

Separations on HPLC and UPLC Systems Using BioResolve RP mAb Polyphenyl, 450 Å, 2.7 µm Columns


It is possible to use a column containing the exact same material while developing a method during discovery, working through product development, and implementing QC manufacturing controls. This capability can be attributed to the solid-core particle design and innovative polyphenyl ligand bonding of the BioResolve RP mAb Polyphenyl Column. Method transfer concerns can therefore be minimized.

mAb Subunit Standard

Benchmarking, Method Development, and Troubleshooting

Waters mAb Subunit Standard can be used in the benchmarking of LC and LC-MS techniques, proficiency testing among different instruments and laboratories, and system suitability. This standard is a filtered and stabilized formulation of reduced, IdeS-digested NIST Reference Material 8671 (NIST mAb), a humanized IgG1k expressed from a murine cell line.

- 25 μg of reduced, IdeS-digested NIST Reference Material 8671
- Desalted, stabilized with excipients, and lyophilized
- Excellent stability
- Used to QC each batch on BioResolve RP mAb Polyphenyl Column

APPLICATION AREA: Nanobodies

"We purchased this column to characterize our nanobodies which have a molecular weight of around 14 KDa and it worked really well. Even without expecting it when analyzing them by UPLC-MS with the BioResolve column we were able to distinguish two separate peaks corresponding to the wild type nanobody and an N-terminal pyroglutamat form of it which only differs on 17 units of mass. With that we can say that this column has a really good resolution and is able to distinguish between two close species which may be really useful when working with antibody's modifications."

REVIEWER: Sonia Ciudad Fernández ORGANIZATION: IECB

Ordering Information

BioResolve RP mAb Polyphenyl Columns, Cartridges, Method Validation Kits*, and Standards

BioResolve RP mAb Polyphenyl Column, 450 Å	Particle Size: 2.7 µm				
-	Dimension	P/N (1/pk)	P/N (1/pk with Intact mAb and mAb Subunit Stds)		
	1.0 × 50 mm	186009015	-		
	1.0 × 100 mm	186009016	-		
	1.0 × 150 mm	186009017	-		
	2.1 × 50 mm	186008944	176004156		
	2.1 × 100 mm	186008945	176004157		
	2.1 × 150 mm	186008946	176004158		
	3.0 × 50 mm	186008948	-		
	3.0 × 100 mm	186008949	-		
	3.0 × 150 mm	186008950	-		
	4.6 × 50 mm	186008953	176004167		
	4.6 × 100 mm	186008954	176004168		
	4.6 × 150 mm	186008955	176004169		
BioResolve RP mAb Polyphenyl VanGuard Cartridge, 450 Å	Dimension	P/N (3/pk)	P/N (3/pk with VanGuard Holder)		
	2.1 × 5 mm	186008943	176004212		
-	3.9 × 5 mm	186008947	176004161		
BioResolve RP mAb Polyphenyl Method Validation Kit, 450 Å	Dimension	P/N (3/pk)	P/N (3/pk with Intact mAb and mAb Subunit Stds)		
	1.0 × 100 mm	186009018	-		
	1.0 × 150 mm	186009019	-		
	2.1 × 100 mm	186008956	176004159		
	2.1 × 150 mm	186008957	176004160		
	3.0 × 100 mm	186008958	-		
-	3.0 × 150 mm	186008959	-		
	4.6 × 100 mm	186008960	176004170		
	4.6 × 150 mm	186008961	176004171		

*Each Method Validation Kit contains three columns, each from a different batch.

Standards

Description	P/N
Humanized mAb Standard, 1 vial	186009125
Intact mAb Mass Check Standard, 1 vial	186006552
mAb Subunit Standard, 1 vial	186008927

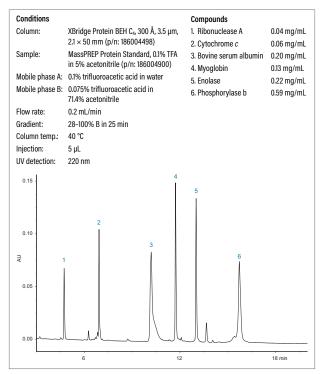
VanGuard Cartridge Universal Holder

Desci	iption	P/N
VanG	ard Cartridge Universal Holder, 1/pk	186007949

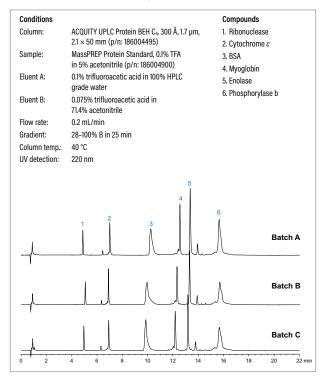
IonHance Difluoroacetic Acid

Description	P/N
IonHance Difluoroacetic Acid, 1 mL, 1/pk	186009201
IonHance Difluoroacetic Acid, 1 mL, 6/pk	176004415
IonHance Difluoroacetic Acid Mobile-Phase Kit, 1 mL, 2/pk with Certified LDPE Container, 100 mL, 2/pk	176010000

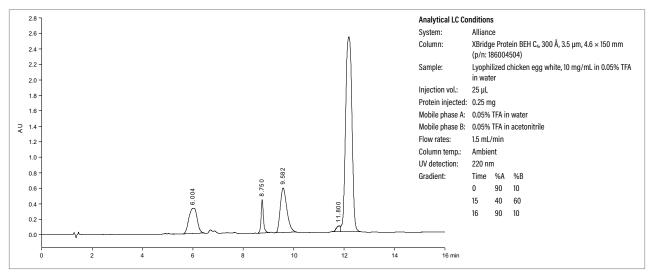
Protein BEH C4, 300 Å Columns


The analysis and characterization of protein samples requires the detection of small chemical differences between large molecules. Most often these analyses have employed an array of analytical techniques, each sensitive to a different property of the protein. Reversed-phase HPLC has not been fully exploited in these tests because the separation of proteins often yields relatively broad and asymmetrical peaks with poor recovery and significant carryover. Waters reversed-phase, ethylene-bridged hybrid (BEH Technology) Protein Separation Technology Columns are specifically designed for the high-resolution analysis of proteins.

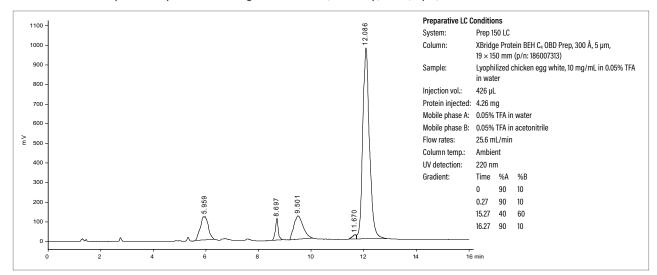
Waters family of Protein BEH C₄, 300 Å Columns for protein separations:


- Separates proteins of various sizes, hydrophobicities, and isoelectric points
- Tolerates extreme pH and temperature
- HPLC/UHPLC (3.5 μm) and UPLC (1.7 μm) column to address instrumentation and application needs
- Preparative columns available in 5- and 10-µm particle offerings
- Quality-control tested with MassPREP Protein Standard Mix (p/n: 186004900)

C4, 300 Å Columns Developed for Protein Chromatography


Protein BEH C₄ 300 Å columns can be used with proteins that have a wide range of properties. This protein mix was chosen to represent a range of isoelectric points, molecular weights, and hydrophobicities.

Batch-to-Batch Reproducibility



Waters MassPREP Protein Standard Mix is used to critically QC test the ACQUITY UPLC Protein BEH C₄ 300 Å Columns to help ensure consistent batch-to-batch and column-to-column performance.

Optimized Analytical Scale Separation on XBridge Protein BEH C₄, 300 Å, 3.5 µm, 4.6 × 150 mm Column

Analytical scale separation of 250 µg chicken egg white proteins on XBridge Protein BEH C4, 300 Å, 3.5 µm, 4.6 × 150 mm Column.

Successful Scaled Preparative Separation on XBridge Protein BEH C₄, OBD Prep, 300 Å, 5 µm, 19 × 150 mm Column

Effective method development and scaling of the 250 μm analytical scale separation to the preparative BEH C₄ 300 Å, 5 μm, 19 × 150 mm column results in chromatography showing an almost identical separation pattern.

QuanRecovery Vials and Plates with MaxPeak HPS

Designed for large molecule LC-MS scientists who need the ultimate in recovery, sensitivity, and repeatability.

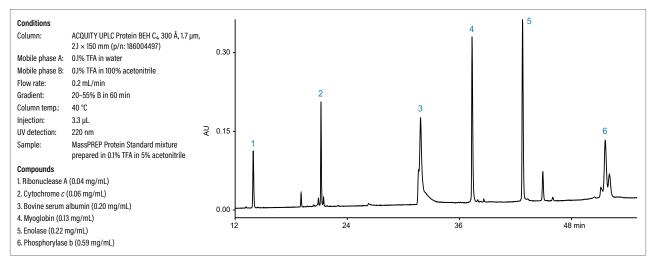
- Reduce sample losses due to non-specific binding and ionic interactions
- Autosampler-ready formats with low residual volumes enable improved utilization of small sample volumes

MaxPeak[™] High Performance Surfaces are innovative technologies designed to increase analyte recovery, sensitivity, and reproducibility by minimizing analyte/surface interactions that can lead to sample losses.

Ordering Information

QuanRecovery Vials and Plates with MaxPeak HPS

Description	P/N
QuanRecovery™ with MaxPeak HPS 300 µL vials, 25/pk	186009242
QuanRecovery with MaxPeak HPS 300 µL vials, 100/pk	186009186
Combination Pack: QuanRecovery with MaxPeak HPS vials package (p/n: 186009186) with pre-slit PTFE silicone cap and septum, 100/pk	176004434
QuanRecovery with MaxPeak HPS 700 µL 96-well plates, 25/pk	186009184
QuanRecovery with MaxPeak HPS 700 µL 96-well plates, 5/pk	186009185


MassPREP Protein Standard Mix

Benchmarking, Method Development, and Troubleshooting

The MassPREP Protein Standard Mix consists of carefully chosen proteins encompassing a wide range of properties. These mixtures contain proteins that vary in isoelectric points, molecular weights, and hydrophobicities. These characteristics provide the user with an attractive intact protein validation mixture that can be used for a variety of applications. In particular, it is used as a benchmarking standard for ACQUITY UPLC Protein BEH C_4 , 300 Å Columns.

MassPREP Protein Standard Mix		
Protein Sample	Molecular Weight (MW)	Isoelectric Point (pl)
Ribonuclease A, bovine pancreas	13.7 k	9.6
Cytochrome c, horse heart, 96%	12.4 k	10.25
Albumin, bovine serum, 96–99%	66.4 k	5.8
Myoglobin, horse heart >90%	16.7 k	6.53
Enolase from baker's yeast (S. cerevisiae)	46.7 k	6.53
Phosphorylase b, rabbit muscle	97.0 k	7.18

MassPREP Protein Standard Mix on an ACQUITY UPLC Protein BEH C4, 1.7 µm, 2.1 × 150 mm Column

Use of Waters' carefully formulated and QC tested MassPREP Protein Standard Mix can help chromatographers confirm adequate performance of their reversed-phase column and LC system prior to the analyses of potentially highly valued samples.

MassPREP Protein Standard Mixture Certificate of Analysis

Waters' Analytical Standards and Reagents come with a Certificate of Analysis that contains relevant, lot-specific information. Many times a chromatogram is attached using data acquired the same way a customer would use the standard.

Ordering Information

Protein Standards

Description	P/N
MassPREP Protein Standard Mix	186004900
Intact mAb Mass Check Standard	186006552

Waters Mast Sandard M PN 1960049 Let No. Wol Exp. Date: 15

ACQUITY UPLC Protein BEH C4, 300 Å Columns and Method Validation Kits

Protein BEH C ₄ , 300 Å	Particle Si	ze: 1.7 µm	Protein BEH C4, 300 Å VanGuard Pre-Column,	Particle Size: 1.7 µm	
	Dimension	P/N	3/pk Protein BEH C4, 300 Å Method Validation Kit*	Dimension	P/N
	$1.0 \times 50 \text{ mm}$	186005589		2.1 × 5 mm	186004623
	1.0 × 100 mm	186005590			
	1.0 × 150 mm	186005591		Particle Size: 1.7 µm	
	$2.1 \times 50 \text{ mm}$	186004495		2.1 × 100 mm	186004899
	2.1 × 100 mm	186004496		2.1 × 150 mm	186006549
	2.1 × 150 mm	186004497			

XBridge Protein BEH HPLC and UHPLC Columns and Method Validation Kits

Protein BEH C₄, 300 Å	Particle Size: 2.5 µm		Particle Siz	Particle Size: 3.5 µm		Particle Size: 5 µm		Particle Size: 10 µm	
	Dimension	P/N	Dimension	P/N	Dimension	P/N	Dimension	P/N	
	2.1 × 50 mm	186009127	2.1 × 10 mm Guard Cartridge	186007230 ¹	10 × 10 mm Guard Cartridge	186007305 ³	10 × 10 mm Guard Cartridge	186007325 ³	
	2.1 × 100 mm	186009128	2.1 × 50 mm	186004498	$10 \times 50 \text{ mm}$	186008272	$10 \times 50 \text{ mm}$	186008276	
	2.1 × 150 mm	186009129	2.1 × 100 mm	186004499	10 × 100 mm	186008273	10 × 100 mm	186008277	
	3 × 50 mm	186009132	2.1 × 150 mm	186004500	10 × 150 mm	186008274	10 × 150 mm	186008278	
	3 × 100 mm	186009133	2.1 × 250 mm	186004501	10 × 250 mm	186008275	10 × 250 mm	186008279	
	3 × 150 mm	186009134	4.6 × 20 mm Guard Cartridge	186007235 ²	19 × 10 mm Guard Cartridge	1860073104	19 × 10 mm Guard Cartridge	1860073304	
	4.6 × 50 mm	186009136	4.6 × 50 mm	186004502	19 × 50 mm	186007311	19 × 50 mm	186007331	
	4.6 × 100 mm	186009137	4.6 × 100 mm (MVK)*	186005465	19 × 100 mm	186007312	19 × 100 mm	186007332	
	4.6 × 150 mm	186009138	4.6 × 100 mm	186004503	19 × 150 mm	186007313	19 × 150 mm	186007333	
			4.6 × 150 mm	186004504	19 × 250 mm	186007314	19 × 250 mm	186007334	
			4.6 × 250 mm	186004505	30 × 10 mm Guard Cartridge	1860073155	30 × 10 mm Guard Cartridge	186007335⁵	
					$30 \times 50 \text{ mm}$	186007316	$30 \times 50 \text{ mm}$	186007336	
					30 × 75 mm	186007317	30 × 75 mm	186007337	
					$30 \times 100 \text{ mm}$	186007318	30 × 100 mm	186007338	
					30 × 150 mm	186007319	30 × 150 mm	186007339	
					30 × 250 mm	186007320			

Protein BEH C4, 300 Å VanGuard	2.1 × 5 mm	186009131
Pre-column, 3/pk**	3.9 × 5 mm	186009140

Protein BEH C ₄ , 300 Å Method	2.1 × 5 mm	186009131
Validation Kit*	3 × 150 mm	186009135
	4.6 × 150 mm	186009139

*Three columns from three different batches of material.

** Requires VanGuard Cartridge Universal Holder, p/n: 186007949

'Requires 2.1 × 10 mm Universal Sentry Guard Holder, p/n WAT097958.

 2 Requires 4.6 \times 20 mm Universal Sentry Guard Holder, p/n WAT046910.

Requires 10 × 10 mm Cartridge Holder, p/n 28900779.
Requires 19 × 10 mm Cartridge Holder, p/n 186000709.
Requires 30 × 10 mm Prep Guard Holder, p/n 186006912.

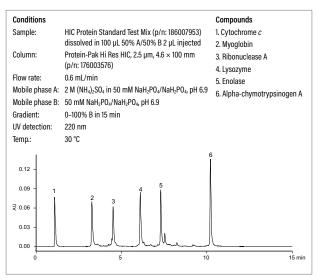
Protein-Pak Hi Res HIC Columns and HIC Protein Standard

Protein-Pak Hi Res HIC (Hydrophobic Interaction Chromatography) columns contain non-porous, polymethacrylate-based particles (2.5 µm) functionalized with a butyl-ligand coating and are well suited for the characterization of proteins and biotherapeutics including monoclonal antibodies (mAb) and antibody drug conjugates (ADC).

While reversed-phase chromatography is a frequently used bioanalytical technique, HIC offers attractive orthogonal separation advantages. In reversed-phase LC, proteins are retained by hydrophobic interaction with alkyl groups (e.g., C₁₈) on the packing material. However, the butylligand density on Waters Protein-Pak Hi Res HIC Column is comparatively less resulting in fewer protein-ligand hydrophobic interactions. Consequently, HIC-based elution is possible using gradients of decreasing salt concentration at physiological pH values. Use of denaturing organic solvent eluents (e.g., acetonitrile in 0.1% TFA) thus allowing biotherapeutics (e.g., acid labile, cysteine-linked ADCs) to be analyzed in non-denaturing conditions.

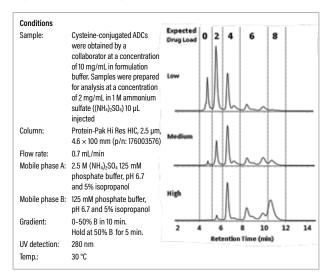
In addition, Waters has developed HIC Protein Standard Test Mix designed for user verification of HPLC/UPLC instrument and Protein-Pak Hi Res HIC Column performance prior to sample analyses. This intact protein validation mix, when used on a regular basis, helps monitor system and column performance and is also highly valuable in method development and/or troubleshooting. The standard contains a carefully chosen set of six proteins that provide good chromatographic representation using a gradient of decreasing salt concentration.

- Ideally suited for hydrophobic-based separations for protein characterization using non-denaturing conditions
- Use of non-porous particles help deliver fast, efficient separations to address high-throughput needs
- Shipped with Waters HIC Protein Test Standard to help test for acceptable instrument and HIC column performance
- Successfully used for the analysis of cysteine-based, antibody drug conjugates


Ordering Information

Protein-Pak Hi Res HIC Columns and HIC Protein Standards

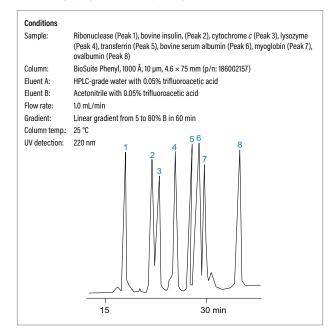
Description	Dimension	P/N
Protein-Pak Hi Res HIC, 2.5 µm Column and HIC Protein Standard	4.6 × 35 mm	176003575
Protein-Pak Hi Res HIC, 2.5 µm Column and HIC Protein Standard	4.6 × 100 mm	176003576
HIC Protein Test Standard	-	186007953



Protein-Pak Hi Res HIC Column and HIC Protein Standard

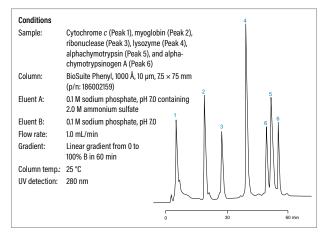
Using a gradient of decreasing salt concentration and on-denaturing eluents, Waters Protein-Pak Hi Res HIC Column is well suited for the separation of proteins of various molecular weights and hydrophobic interactions.

Separation of ADC Samples on Protein-Pak Hi Res HIC Column

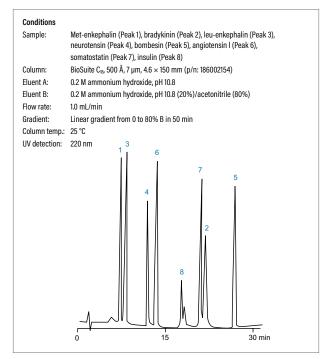

Monitoring drug load variability. Three batches of cysteine-linked ADCs were synthesized, each with a different level of drug conjugation (low, medium, high) and separated using hydrophobic interaction chromatography. The drug load distribution shifted from low-to-high corresponding to an increase in the load of the hydrophobic drug.

BioSuite Hydrophobic-Interaction Chromatography (HIC) HPLC Columns

The separation of proteins and peptides based upon hydrophobic characteristics is a powerful chromatographic technique. However, some proteins denature at elevated organic solvent concentrations making reversed-phase chromatography (RPC) difficult. BioSuite Phenyl Hydrophobic-interaction Chromatography (HIC) provides a viable separation alternative to RPC. HIC is characterized by the adsorption of compounds to a weakly hydrophobic surface at high salt concentrations, followed by elution with a decreasing salt gradient. HIC combines the non-denaturing characteristics of salt precipitation with the precision of HPLC to yield excellent separation of biologically active material. BioSuite Phenyl, 1000 Å, 10 µm HIC column media consists of a phenyl group bonded to a methacrylic ester-based polymeric resin.


The large 1000 Å pore size accommodates proteins up to 5,000,000 Daltons. A 21.5 × 150 mm column is also available for "lab scale" isolations.

Hydrophobic Proteins are Well Resolved by Reversed-Phase Chromatography on BioSuite pPhenyl RP Column

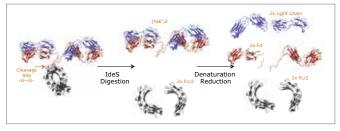


The BioSuite pPhenyl, 1000 Å RPC Columns have a higher ligand density compared to the BioSuite Phenyl, 1000 Å HIC Columns and are not recommended for hydrophobic-interaction separations.

Hydrophobic-Interaction Chromatography on BioSuite Phenyl HIC Column is an Excellent Alternative to Reversed-Phase Methods

The BioSuite Phenyl, 1000 Å HIC Columns have a lower ligand density compared to the BioSuite pPhenyl, 1000 Å RPC Columns and are not recommended for reversedphase separations. Reversed-Phase Chromatography at Elevated pH on BioSuite $pC_{\mbox{\tiny 18}}$ RP Column Possible on Polymer Based Material

Use of "pH stable" methacrylate-based particles contained in Waters BioSuite pC_{18} Reversed-Phase Columns allow scientists to change separation selectivity by using a pH not possible with 100% silica-based C_{18} columns.

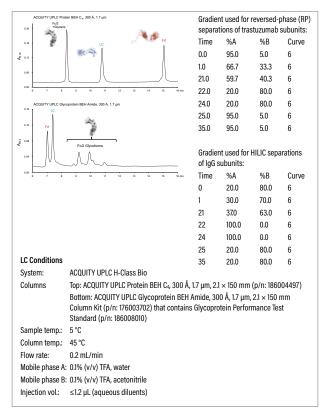

Ordering Information

Hydrophobic-Interaction HPLC and UHPLC Column

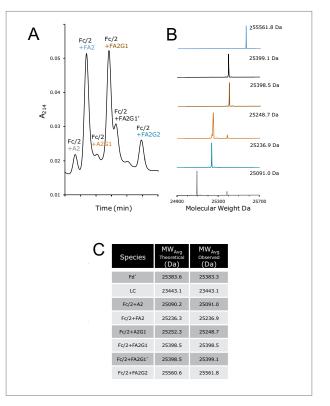
Description	Dimension	P/N	
Protein HIC PH-814 Steel Column	8 × 75 mm	WAT035520	

HILIC for Large Molecules

In what is commonly referred to as a middle-up or middledown analysis, native mAbs can be proteolyzed into subunits to facilitate characterization. One increasingly popular way to produce subunit digests of mAbs is via the IdeS protease (Immunoglobulin Degrading Enzyme of S. pyogenes). IdeS cleaves with high fidelity at a conserved



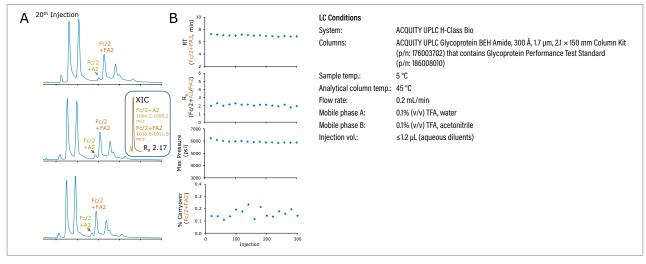
IdeS digestion and reduction scheme for preparing IgG LC, Fd', and Fc/2 subunits.


sequence motif in the hinge region of humanized mAbs to cleanly produce, upon reduction, three 25 kDa mAb fragments that are amenable to mass spectrometry and useful for localizing different attributes of therapeutic mAbs (below).

IdeS digestion combined with reversed-phase (RP) chromatography on Waters ACQUITY UPLC Protein BEH C₄, 300 Å Column has been successfully used as a simple identity test for mAbs and fusion proteins, because IdeS produced subunits from different drug products will exhibit diagnostic RP retention times. However, it should be kept in mind that many IgG modifications more strongly elicit changes in the hydrophilicity of a mAb along with its capacity for hydrogen bonding.

Compared to the reversed-phase separation of glycoprotein subunits, HILIC-based chromatography on Waters ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm Columns offers additional information related to a mAb digest as shown in the figures below.

Trastuzumab subunit separations. (A) 1 μg of reduced, IdeS digested separated using an ACQUITY UPLC Protein BEH C₄, 300 Å, 1.7 μm Column (0.7 μL aqueous injection). (B) 1 μg of reduced, IdeS digested separated using an ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 μm Column (0.7 μL aqueous injection).



Profiling trastuzumab Fc/2 subunit glycoforms. (A) Retention window corresponding to the glycoform separation space. (B) Deconvoluted ESI mass spectra for the HILIC chromatographic peaks. Chromatographic peaks are labeled with the same color as their corresponding mass spectra. (C) Molecular weights for the observed trastuzumab subunits.

Lifetime Testing of ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm Columns for Profiling IgG Subunit Glycoforms

The ability of Waters BEH Amide, 300 Å, 1.7 µm Column to robustly deliver separations over time is shown below by data collected from a series 300 sequential injections of a reduced, IdeS digested trastuzumab sample.

This was a potentially challenging use scenario given that the reduced, IdeS digested mAb sample contains both high concentrations of guanidine denaturant and TCEP reducing agent. Total ion chromatograms corresponding to the 20th, 180th, and 300th injections of this experiment are displayed. In these analyses, particular attention was paid to the half-height resolution of the Fc/2+A2 and Fc/2+FA2 species, which was assessed every 20th separation using extracted ion chromatograms (XICs). In this testing, several additional chromatographic parameters were also monitored, including the retention time of the Fc/2+FA2 species, the maximum system pressure observed during the chromatographic run, and the percent (%) carryover of the most abundant glycoform, the Fc/2+FA2 species. Plots of these parameters underscore the consistency of the subunit separation across the lifetime of the column.

Lifetime testing of an ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm, 2.1 × 150 mm Column for sequential injections of reduced, IdeS digested trastuzumab. (A) Total ion chromatograms (TICs) from the 20th, 180th, and 300th injections. Example extracted ion chromatograms (XICs) for Fc/2+A2 and Fc/2+FA2 that were used to measure resolution. (B) Chromatographic parameters observed across the 300 injection lifetime test. Each panel shows results for each 20th injection, including retention time (RT) of the FA2 glycoform, Rs between A2 and FA2 glycoforms, maximum pressure across the run, and % carryover as measured by a repeat gradient and XICs.

ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm Column Consistency

To help ensure batch-to-batch and column-to-column consistency in validated methods, each batch of material selected for use in

the ACQUITY UPLC Glycoprotein BEH Amide, 300 Å, 1.7 µm Column offering is specifically QC tested with Waters Glycoprotein Performance Test Standard (p/n: 186008010). This same standard is shipped (at no additional cost) with each column to help benchmark method development and/or troubleshoot use of this column and instrumentation.

Ordering Information

ACQUITY UPLC Glycoprotein BEH Amide, 300 Å Columns and Standards

Particle Size: 1.7 µm					
Dimension	Qty.	P/N			
2.1 × 5 mm	3/pk with standard	176003699			
2.1 × 50 mm	1/pk with standard	176003700			
2.1 × 100 mm	1/pk with standard	176003701			
2.1 × 150 mm	1/pk with standard	176003702			
2.1×100 (MVK)	3/pk with standard	176003703			
	2.1 × 5 mm 2.1 × 50 mm 2.1 × 100 mm 2.1 × 150 mm	2.1 × 5 mm 3/pk with standard 2.1 × 50 mm 1/pk with standard 2.1 × 100 mm 1/pk with standard 2.1 × 150 mm 1/pk with standard			

SEC AGGREGATE ANALYSIS

Size-exclusion chromatography (SEC) is the analytical "gold standard" for the separation and accurate quantitation of aggregates contained in biotherapeutic peptides and proteins (e.g., mAbs).

The principle of SEC chromatography involves the ability of an appropriately selected column to separate molecules based on differences in the molecules' "size in solution" that loosely correlates to their molecular weight.

A partial list of customer-desired benefits using Waters BEH-based SEC columns include:

- Available guards and columns containing 125 Å, 250 Å, or 450 Å pores
- Purposely designed columns containing different particle sizes for UPLC, UHPLC, or HPLC-based applications
- Less ionic interactions using stable diol-coating for higher confidence in obtained data
- State-of-the-art column packing technologies for outstanding column life pH stability from 2-10 for enhanced method development flexibility for challenging samples
- Quality control tested with relevant proteins and peptides to help ensure consistent batch-to-batch and column-to-column performance

The following four factors provide guidance for selecting an appropriate SEC column that matches your application and laboratory needs.

1) Molecular weight vs pore size selection

Column pore size and sample molecular weight (MW) go in-hand when selecting an SEC column. The pore size of the column media, generally expressed in angstroms (Å), determines both how quickly a sample will travel through the column and how well the sample will be retained in relation to the sample's molecular weight. The inclusion of "in relation to your samples molecular weight" is an important distinction to make here. Without it, it might be assumed that smaller pore size equals better results, however, that is not the case. For example, if the pore size is too small, based on the sample's MW, larger molecules will not move as freely, reducing retention and column efficiency.

Therefore, the MW of the substance being tested would influence, if not determine, what column pore size to choose. A sample with a molecular weight between 1000-8000 Da would be best suited for a 125 Å column. This selection will provide better retention characteristics in separating small compounds compared to a similar column with a pore size of 200 or 450 Å. if the sample's molecular weight is between 10,000-450,000 Da, then a column pore size of 200 or 450 Å should be chosen. Any sample with a MW over 450,000 Da should be analyzed with a 450 Å column.

2) LC system dispersion

LC system dispersion can also significantly affect SEC column choice. In SEC, analytes elute within a single column volume during the isocratic separation. This makes it important to consider the total LC system volume, including the injector, tubing, and detector volumes of the obtained separation. In general, the lower the total LC system dispersion volume relative to the column volume, the narrower the peaks.

Examples of system dispersion specifications for column recommendations:

LC system dispersions <20 μ L (UPLC) = 1.7 μ m column

LC system dispersions >20 - <35 μ L (UHPLC) = 2.5 μ m column

LC system dispersions >35 μ L (HPLC) = 2.5 or 3.5 μ m column

3) Resolving multiple species that are less than two-fold different in molecular weight

The ability to adequately resolve compounds that differ by two-fold in molecular weight (e.g., 300 K, mAb IgG dimer from 150 K monomer) can be relatively easy to accomplish when using an appropriate SEC column. However, a far more challenging scenario involves the species separation that differs by less than 2x molecular weight (e.g., 150 K mAb IgG monomer from 100 K "Clip"). In addition, the ability to obtain reliable quantitation is challenged when the minor components exist at <0.5% compared to the major peak of interest.

4) Speed of separation

The final factor to consider when selecting an appropriate SEC column is the desired speed for the separation. Generally, there is a trade-off between resolution and speed when implementing size-exclusion chromatography. However, a balance can be achieved by selecting the appropriate column. When an SEC column containing comparatively smaller particles (e.g., 1.7 µm) is used on an appropriate LC system, quicker results are obtained which differs from separations performed on larger particle-sized (2.5 or 3.5 µm) SEC columns. For example, an SEC 1.7 µm, 4.6 x 300 mm column can provide excellent resolution in under nine minutes. Meanwhile a separation on an SEC 2.5 µm, 7.8 x 300 mm column will generally take approximately 12 minutes; and, on an SEC 3.5 µm, 7.8 x 300 mm column it will take 18 minutes.

An appropriate SEC column selection, that is based on the separation needs and the LC system being used, can generate reproducible separations and accurate component quantitation for various protein and peptide samples. To get the best resolution, reproducibility, and speed, keep in mind the four factors outlined above and how they relate to your specific samples. This will help ensure you select the best possible column for your application.

Four-Step Guide for Successful SEC Column Selection

What is the molecular weight of what you are trying to separate?					
NEED: MW 1-8K Da MW 10-450K Da MW 100-1500K Da					
REC. COLUMN SPEC:	125 Å	200 Å	400 Å		

What type of LC system dispersion* are you using?					
NEED: <20 μL (UPLC)					
REC. COLUMN SPEC:	1.7 μm or 2.5 μm	2.5 μm	2.5 μm or 3.5 μm		

Do you need to resolve something that is less than 2-fold difference in MW?**						
NEED: 2.5 μm 2.5 μm or 3.5 μm						
REC. COLUMN SPEC:	4.6 x 300 mm or 7.8 x 300 mm	7.8 x 300 mm	7.8 x 300 mm			

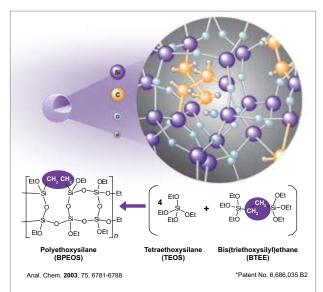
Do you need maximum speed on a MW greater than two-fold?					
NEED:	<9 min	<12 min	<18 min		
REC. COLUMN SPEC:	1.7 μm 4.6 x 150 mm	2.5 μm 4.6 x 150 mm	2.5 μm 7.8 x 150 mm		

*For guidance on measuring system dispersion, download the SEC Optimization Guide (p/n: 720006067EN) on www waters.com.

** To understand the "why" behind these recommendations, read the Application Note (p/n: 720006336EN) on www.waters.com.

BEH TECHNOLOGY

In 1999, Waters launched the family of XTerra[™] HPLC columns featuring patented, first-generation hybridparticle technology (HPT). HPT enabled XTerra Columns to become one of the most successful column products in the history of Waters. In HPT, the best properties of inorganic (silica) and organic (polymeric) packings are combined to produce a material that has superior mechanical strength, efficiency, high-pH stability, and peak shape for basic compounds.

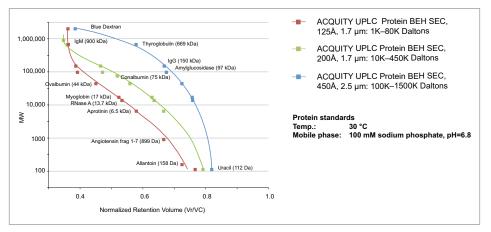

The first-generation methyl-hybrid particles of XTerra Columns did not possess the mechanical strength or efficiency necessary to fully realize the potential speed, sensitivity, and resolution capabilities of UPLC Technology. Therefore, a new pressure-tolerant particle needed to be created. This second-generation hybrid material utilizes an ethylene-bridged hybrid (BEH) structure. Compared to the first-generation methyl-hybrid particle of XTerra Columns, the BEH particle of ACQUITY UPLC BEH Columns exhibits improved efficiency, strength and pH range. BEH Technology is a key enabler of the speed, sensitivity, and resolution of both small and large molecule UPLC separations.

Aggregate Analysis

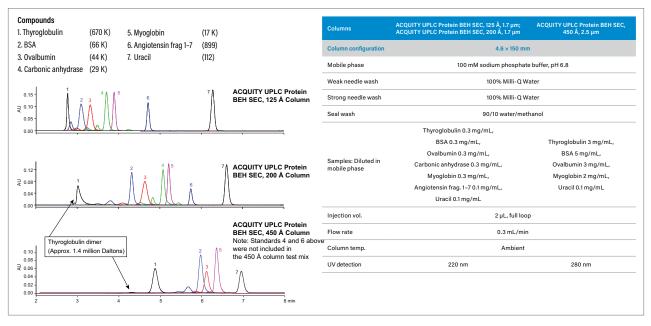
ACQUITY UPLC Technology allows analytical chemists to reach far beyond conventional LC separations and has proven itself to be a major asset in increasing the productivity of laboratories around the world. The latest addition to this application-driven portfolio is the ACQUITY UPLC SEC System Solution, enabled by the unique ethylene-bridged-hybrid (BEH) diol-coated particle technology.

- Determines aggregation levels in therapeutic monoclonal antibodies up to 10x faster than traditional HPLC-based size-exclusion chromatography (SEC)
- Fully optimized column chemistry significantly reduces the requirement for high salt concentration mobile phases
- QC tested with BEH protein standards, ensuring unmatched batch-to-batch consistency and increased confidence in validated methods
- Waters Protein Standard Mixes are available for the 125 Å, 200 Å, and 450 Å SEC columns for additional validation (p/n: 186006519,186006518, and 186006842, respectively)

The BEH Particle: One of the Key Enablers of UPLC Technology


Ethylene Bridged Hybrid (BEH) Technology synthesis creates particles that ensure extreme column performance and long column lifetime under harsh operating conditions.

ACQUITY UPLC Technology

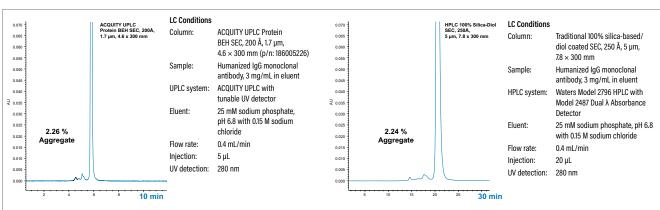

Waters ACQUITY UPLC Technology allows analytical chemists to reach far beyond conventional LC separations and is proven to be a valuable asset that improves the quality of collected data while increasing sample throughput and productivity. Biotherapeutics and biosimilars manufacturers can now choose the most appropriate UPLC-based, Protein BEH SEC Columns (i.e., 125 Å, 200 Å, and 450 Å pore size) to satisfy their application requirements based on this separation technology.

Calibration Curves on ACQUITY UPLC Protein BEH SEC, 125 Å, 200 Å, and 450 Å Columns

Size exclusion chromatography (SEC) separates compounds primarily based on their relative size in solution. Calibration curves on UPLC-based SEC columns of different pore size, using defined protein and peptides of known molecular weight, help chromatographers select the most appropriate SEC column for their specific application.

Separation of Protein and Peptide Standards on ACQUITY UPLC Protein BEH SEC, 125 Å, 200 Å, and 450 Å Columns

Waters offers a family of BEH-based, diol-coated SEC columns of different pore size to satisfactorily address the molecular weight range of analytes to be separated.


SEC Analysis of Insulin

Size-exclusion chromatography (SEC) is the USP and EP standard method for the analysis of covalent HMW insulin in therapeutic preparations. Compared to use of traditional HPLC-based SEC methods, significant improvement in insulin component resolution, while reducing analysis time and mobile-phase consumption, is obtained using a Waters Protein BEH SEC, 125 Å, 1.7 μm Column with Waters UltraPerformance LC™ (UPLC) Instrumentation (shown below).

Alliance HPLC System LC Conditions Insulin HMWP SEC, 125 Å, 10 $\mu\text{m},$ 7.8 \times 300 mm Column: (p/n: WAT201549) Sample: Insulin, human recombinant (Sigma I-2643) (4 mg/mL) Injection: 100 µL Eluent: L-arginine (1 gm/liter)/acetic acid/acetonitrile (65/15/20, v/v/v) Flow: 0.5 mL/min (isocratic) UV detection: 276 nm 18 22 24 min ACQUITY UPLC System LC Conditions ACQUITY UPLC Protein BEH SEC, 125 Å, 1.7 µm, Column: 4.6 × 300 mm (p/n: 186006506) Sample: Insulin, human recombinant (Sigma I-2643) (4 mg/mL) Injection: 5 µL L-arginine (1 gm/liter)/acetic acid/acetonitrile Eluent: (65/15/20, v/v/v)0.4 mL/min (isocratic) Flow UV detection: 276 nm 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 min

Insulin Analyses by Traditional HPLC-SEC vs. UPLC-SEC

Compared to use of traditional HPLC-based SEC technology for the analysis of earlier eluting insulin aggregates from desired monomer species, Waters ACQUITY UPLC BEH SEC Technology delivers benefits of improved component resolution and in less time.

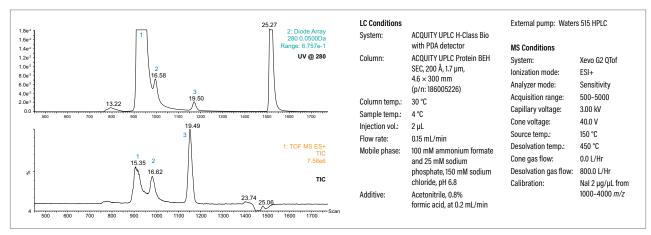
Comparative UPLC-Based SEC Benefits vs. Use of Traditional HPLC SEC for Biotherapeutic Characterization

Compared to use of traditional HPLC-based SEC technology, Waters ACQUITY UPLC BEH SEC Technology delivers benefits of the comparable determination on mAb aggregate vs. monomer (i.e., less time, higher sample throughput).

Insulin HMWP HPLC Columns

The Waters Insulin HMWP Column is specifically designed for use in the manufacture and quality control of insulin products. This column is tested for performance in the analysis of impurities with molecular masses greater than those of insulin.

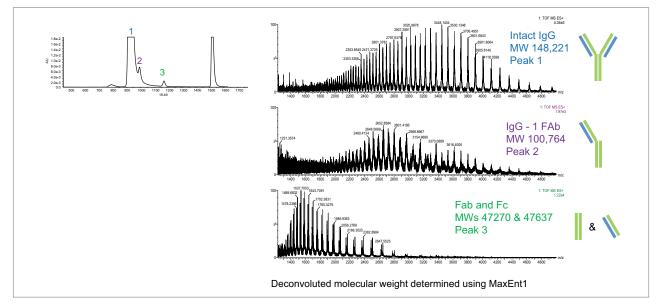
Ordering Information


Insulin HMWP SEC HPLC Columns

Description	Dimension	P/N
Insulin HMWP Column	7.8 × 300 mm	WAT201549
Protein-Pak 125 Sentry Guard Column, 2/pk (requires holder)	3.9 × 20 mm	186000926
Sentry Universal Guard Column Holder	-	WAT046910

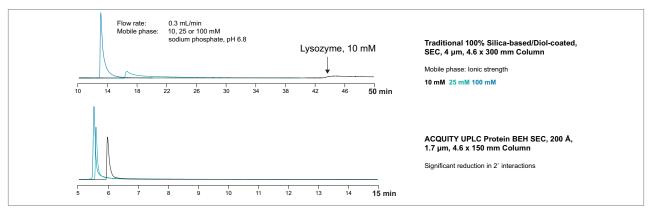
Tested to perform in the method published in PharmaEuropa Vol. 8, No 3, September 1996

LC-MS Analyses Using SEC and Volatile Eluents


Size-exclusion chromatography (SEC), under non-denaturing conditions, is a standard method for testing biomolecules and their aggregates. MALS and AUC are established detectors but cannot provide exact mass for unknown species with a sufficient accuracy. The presence of an unexpected peak requires further investigation and/or confirmation of molecular weight, and SE-UPLC-MS under aqueous, non-denaturing conditions can provide valuable information that would more rapidly solve an organization's issues with characterization or quality.

LC-MS Analysis of Humanized Monoclonal Antibody on Protein BEH SEC, 200 Å, 1.7 µm

An intact biotherapeutic mAb, which was past expiry, was analyzed by using MS-friendly, non-denaturing conditions. In the UV chromatogram, not only are the mAb aggregate and monomer observed, but a low molecular weight (LMW) peak eluting after the intact mAb is partially resolved as well. In addition to these peaks, the UV chromatogram reveals two other LMW species.

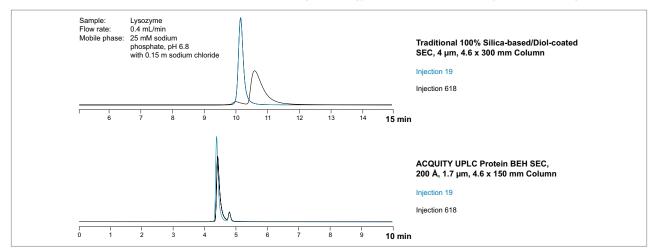

Intact mAb Extracted and Deconvoluted Mass Spectra

Shown are the raw MS spectra for the peaks shown in the chromatogram to the left. The calculated masses, using MaxEntl Software, were consistent with the structures shown.

Reduced Requirement for High Salt Concentration Mobile Phases

With conventional silica-based SEC column chemistries, undesirable secondary ionic interactions between the silica surface and basic proteins can result in long retention times and excessive peak tailing. Traditionally, the solution to this issue is the inclusion of high concentrations of a salt to compete for the charged sites on the surface of the silica. The unique surface chemistry of the ACQUITY UPLC Protein BEH SEC, 200 Å Column significantly reduces these secondary interactions, resulting in the ability to use less-aggressive-mobile-phase salt concentrations.

Effect of Eluent Ionic Strength on the SEC Analysis of the Basic Protein Lysozyme on 100% Silica vs. BEH SEC Particles

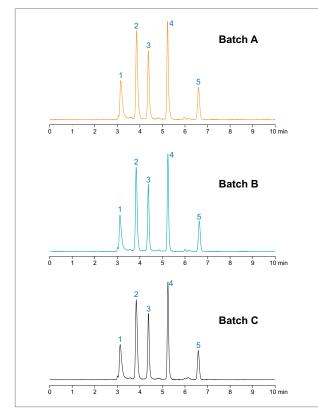

Conventional silica-based columns for SEC can exhibit significant secondary interactions, especially for basic proteins like lysozyme. In this example, a lower concentration of sodium phosphate (10 mM) causes lysozyme to be barely detectable. However, these non-desired secondary interactions are significantly reduced on the ACQUITY UPLC Protein BEH SEC, 200 Å, 1.7 µm Column, as is shown with the same lysozyme analysis on the conventional silica-based SEC column. On the ACQUITY UPLC Protein BEH SEC Column, the peak shape is drastically improved with 10 mM salt, thereby eliminating the need to use high salt concentrations. This can lead to increased column and instrument lifetime.

A New Level of Column Stability for Size-Exclusion Chromatography

BEH particle technology is well established for chromatography of synthetic oligonucleotides, amino acids, peptides, proteins, and labeled glycans with stability and performance attributes not found with traditional, 100% silica-based particles.

The combination of the BEH base particle and the patent-pending, innovative, diol-bonding process results in column stability, performance, and lifetime not typical in traditional, size-exclusion chromatographic columns.

ACQUITY UPLC Protein BEH SEC, 200 Å Particle and Diol Bonding Technology Provides a Stable Chemistry with Outstanding Column Life


This example compares the lifetime of the conventional SEC column to the ACQUITY UPLC Protein BEH SEC, 200 Å, 1.7 µm Column for lysozyme. The conventional SEC column not only shows a severe deterioration in peak shape, but also a difference in the retention that appears with increasing injections. This indicates that the conventional column is undergoing a chemical change that is not seen with the ACQUITY UPLC Protein BEH SEC Column. The ACQUITY UPLC Protein BEH SEC Column is stable, both mechanically and chemically, even for very basic proteins that are sensitive to small changes in the column over time.

Stringent Manufacturing Quality Assurance Delivers Confidence in Results

All Waters ACQUITY UPLC Columns chemistries are synthesized in state-of-the-art ISO-certified manufacturing facilities from high-quality raw materials, and are extensively QC tested throughout the synthetic process. In addition, each batch of Protein BEH SEC, 200 Å, 1.7 µm material is specifically tested with relevant proteins to help ensure unmatched batch-to-batch consistency for supreme confidence in validated methods.

Waters ISO 2001 Manufacturing and Testing Processes Help Ensure Outstanding ACQUITY UPLC Protein BEH SEC, 200 Å, 1.7 µm Batch-to-Batch Reproducibility

Waters BEH Protein Standards (125 Å, 200 Å, and 450 Å formulated mixtures) are used to critically QC test our Protein BEH SEC columns to help ensure consistent batch-to-batch and column-to-column performance.

Ordering Information

ACQUITY UPLC Protein BEH SEC Columns and Guard Kits

BEH SEC, 125 Å			Particle Size: 1.7 µm	Particle Size: 2.5 µm
	Dimension	Configuration	P/N	P/N
	4.6 × 150 mm	Column and Standard	176003906	-
	4.6 × 150 mm	Column	186006505	-
	4.6 × 300 mm	Column and Standard	176003907	-
	4.6 × 300 mm	Column	186006506	-
	4.6 × 30 mm	Guard Kit ¹	186006504	-
BEH SEC,	2.1 × 150 mm	Column	186008471	-
200 Å	4.6 × 50 mm	Column	186009082	-
	4.6 × 150 mm	Column and Standard	176003904	-
	4.6 × 150 mm	Column	186005225	-
	4.6 × 300 mm	Column and Standard	176003905	-
	4.6 × 300 mm	Column	186005226	_
	$4.6 \times 30 \text{ mm}$	Guard Kit ¹	186005793	-

BEH SEC, 450 Å	4.6×150 mm Co	lumn and Standard	-	176002996
	4.6 × 150 mm	Column	-	186006851
	4.6 × 300 mm Co	lumn and Standard	-	176002997
	4.6 × 300 mm	Column	-	186006852
	4.6 × 30 mm	Guard Kit ¹	-	186006850

 Size-exclusion chromatography may require modifications to an existing ACQUITY UPLC System. Please reference "Size-Exclusion and Ion-Exchange Chromatography of Proteins using the ACQUITY UPLC System" (p/n: 715002147) or "Size Exclusion and Ion-Exchange Chromatography of Proteins using the ACQUITY UPLC H-Class System" (p/n: 715002909) for specific recommendations.
 To connect two UPLC SEC Columns together in series, we recommend using a

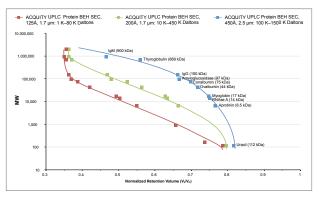
Waters Sample Loop (p/n: 430001516).

 1 All Guard Kits contain a straight piece of 0.005" \times 1.75" tubing and end fittings (p/n: WAT022681) to connect the guard column to the analytical SEC column.

Tubing Options for ACQUITY UPLC Protein BEH SEC Columns

Description	P/N
ELSD Outlet Tubing (0.004" I.D. \times 6" length)	430001562
0.005 × 1.75" SEC UPLC Connection Tubing, 2/pk	186006613

XBridge Protein BEH SEC, 125 Å, 200 Å, and 450 Å Columns and Protein Standard Test Mixtures


Waters series of XBridge Protein BEH SEC, 125 Å, 200 Å, or 450 Å, 2.5 and 3.5 µm Columns were developed to complement our existing line of UPLC-based SEC offerings for use where traditional HPLC-based instrumentation and methods are employed for peptide or protein sizeexclusion chromatography (SEC). These HPLC- and UHPLC-based, SEC chemistries are based on the same Waters Ethylene Bridged Hybrid (BEH)-based particle technology and diol-bonded surface coating as used in our successful line of UPLC-based SEC columns. This process offers chromatographers the option and ability to easily transfer methods based on laboratory instrumentation and component resolution or sample throughput needs.

All of Waters BEH-based SEC columns are manufactured in a cGMP, ISO 9001 certified plant using stringent manufacturing protocols and ultra-pure reagents. Each batch of manufactured material undergoes a series of standard QC measurements (e.g., particle and pore size distribution) followed by an application-specific test using appropriate peptide and protein test mixtures. A packed column efficiency test is then performed on every batch approved, packed SEC column to further help ensure reproducible batch-to-batch and column-to-column performance for use in research or in a demanding validated method.

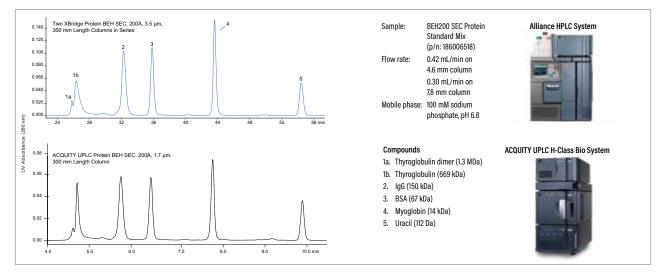
- Outstanding resolution of peptide and protein mixtures (from 1–1,000,000 K) obtained on high-efficient packed columns containing 3.5 µm particles or 125 Å, 200 Å, or 450 Å pores
- Compared to SEC columns containing 100% silica particles, Waters BEH-based SEC columns are stable at pH values greater than 7 and exhibit less non-desired, secondary ionic interactions between the SEC particle and peptide/protein
- Each column is shipped with Waters SEC Protein Standard Mix to help users establish or confirm acceptable instrument and column performance
- HPLC- and UHPLC-based columns complement existing UPLC-based SEC Columns to assist in method transfer based on users' application and throughput needs

Calibration Curves on XBridge Protein BEH SEC, 125 Å, 200 Å, and 450 Å Columns

Size-exclusion chromatography (SEC) separates compounds primarily based on their relative size in solution. Calibration curves on Waters HPLC-based, SEC Columns of different pore size, using defined protein and peptides of known molecular weight, help chromatographers select the most appropriate SEC column for their specific application.

BEH SEC Protein Standards

Benchmarking, Method Development, and Troubleshooting


The BEH SEC Protein Standards are specifically designed to help aid in the benchmarking of each set of columns. Each standard contains carefully chosen proteins unique to that chemistry, which has been worked out meticulously over time. These standards are used to QC the respective HPLC or UPLC columns which makes them an ideal choice for benchmarking a new column while also providing the capability to run the samples over time to monitor column performance. Offers standards for:

- ACQUITY UPLC and XBridge Protein BEH SEC, 125 Å
- ACQUITY UPLC and XBridge Protein BEH SEC, 200 Å
- ACQUITY UPLC and XBridge Protein BEH SEC, 450 Å

Ordering Information

ACQUITY UPLC BEH SEC Protein Standards

Description	P/N	
BEH125 SEC Protein Standard Mix	186006519	Gard Mix
BEH200 SEC Protein Standard Mix	186006518	Date: 01-
BEH450 SEC Protein Standard Mix	186006842	-

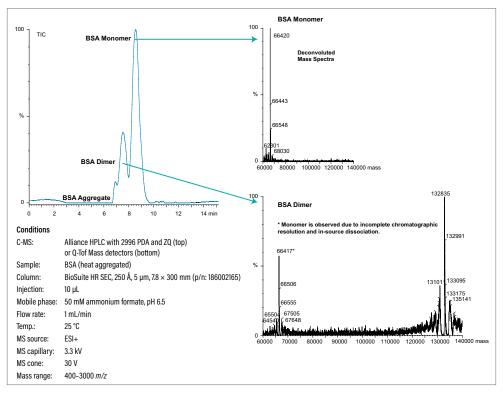
Comparison of separations of Waters BEH200 SEC Protein Standard Mix (p/n: 186006518) on two XBridge Protein BEH SEC, 200 Å, 3.5 µm, 7.8 × 200 mm HPLC Columns run in series using an Alliance HPLC (top panel) and on an ACQUITY UPLC Protein BEH SEC, 200 Å, 1.7 µm, 4.6 × 300 mm Column using an ACQUITY UPLC H-Class Bio System (bottom panel). The flow rates were scaled based on particle diameter and column I.D. to 0.42 mL/minute for the two HPLC columns run in series, and 0.3 mL/minute for the UPLC column. Sample loads were also adjusted for column volume.

Ordering Information

XBridge Protein BEH SEC HPLC and UHPLC Columns

Description	Dimension	Configuration	P/N	Dimension	Configuration	P/N
Particle Size: 2.5 µm			Particle Size: 3.5 µm			
BEH SEC, 125 Å Column with BEH125 SEC Protein Standard Mix	4.6 × 30 mm	Guard Kit ¹	176004331	7.8 × 30 mm	Guard Kit ¹	176003591
	4.6 × 150 mm	Column	176004332	7.8 × 150 mm	Column	176003592
	4.6 × 300 mm	Column	176004333	7.8 × 300 mm	Column	176003593
	7.8 × 30 mm	Guard Kit ¹	176004322			
	7.8 × 150 mm	Column	176004323			
	7.8 × 300 mm	Column	176004324			
BEH SEC, 200 Å Column with	4.6 × 30 mm	Guard Kit ¹	176004334	7.8 × 30 mm	Guard Kit ¹	176003594
BEH200 SEC Protein Standard Mix	4.6 × 150 mm	Column	176004335	7.8 × 150 mm	Column	176003595
	4.6 × 300 mm	Column	176004336	7.8 × 300 mm	Column	176003596
	7.8 × 30 mm	Guard Kit ¹	176004325			
	7.8 × 150 mm	Column	176004326			
	7.8 × 300 mm	Column	176004327			
BEH SEC, 450 Å Column with	4.6 × 30 mm	Guard Kit ¹	176004337	7.8 × 30 mm	Guard Kit ¹	176003597
BEH450 SEC Protein Standard Mix	4.6 × 150 mm	Column	176004338	 7.8 × 150 mm	Column	176003598
	4.6 × 300 mm	Column	176004339	$7.8 \times 300 \text{ mm}$	Column	176003599

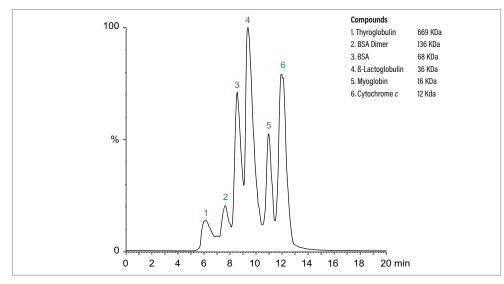
Note: To connect two HPLC/UHPLC SEC columns together in series, we recommend using a Waters Sample Loop, p/n: 430001516.


¹All Guard Kits contain a straight piece of 0.005" × 1.75" tubing and end fittings (p/n: WAT022681) to connect the guard column to the analytical SEC column.

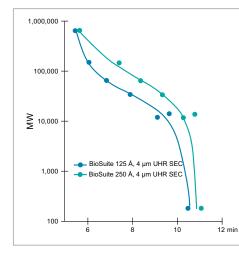
Tubina Options	or XBridge Protein	BEH SEC Columns

Description	P/N
Straight Connection Tubing and End-fittings	WAT022681
U-Bend Connection Tubing and End-fittings	WAT084080

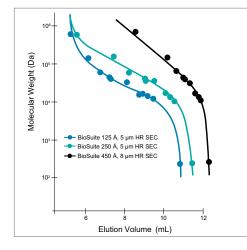
BioSuite Size-Exclusion (SEC) HPLC Columns


BioSuite ultra-high resolution (UHR), high resolution (HR), and standard size-exclusion column packings use a rigid yet "wettable" silica-based media that is stable from pH 2.5–7.5. As indicated in the calibration curve tables, the exclusion limits of BioSuite SEC packings are determined by the particle and pore size of the silica-based material. Particle size of the SEC packing media as well as column length are important parameters that determine separation efficiency. BioSuite 4 µm particle size, UHR Columns provide maximum separation efficiency, followed by BioSuite HR Columns and BioSuite Standard SEC Columns. To maximize column life of analytical (i.e., 4.6 mm or 7.8 mm I.D.) or preparative (i.e., 21.5 mm I.D.) SEC Columns, use of BioSuite Guard Columns is recommended.

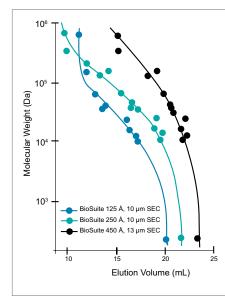
LC-MS Analysis of BSA Aggregation Using BioSuite 250, HR 5 μm SEC Column


SEC is an effective technique to separate and quantitate higher molecular weight protein aggregates from lower molecular weight monomers using optical detection. Use of MS-compatible SEC eluents provides an additional dimension of useful data by providing real time mass data of the separated protein components.

LC-MS Analysis of Protein Standards Using BioSuite 250, 5 µm High Resolution (HR) SEC Column (LC-MS conditions as above)


BioSuite SEC Reference: SEC-MS Analysis of Aggregates in Protein Mixtures. Application Book Supplement of LC/GC Europe. Sept. 2003. (Waters Literature Reference: 720000743EN)

Protein Calibration Curves for BioSuite Ultra-High Resolution (UHR) SEC Columns


nple:	beta lactogl	lin (670,000 Da), gamma globulin (155, Iobulin (18,400 Da), lysozyme (14,300 D	a), cytochrome c (12,400 Da), trig	
umns:		R SEC, 250 Å, 4 µm, 4.6 × 300 mm (p/n C, 125 Å, 4 µm, 4.6 × 300 mm (p/n: 1860		
ent:	0.15 M sodiu	ım phosphate, pH 6.8		
w rate:	0.35 mL/mir	n		
widle.	0.00 1112/1111			
umn temp.:				
umn temp.:	25 °C 220 nm	Globular Protein MW Range	Branched Dextrans	Linear PEG/PEO
umn temp.: detection:	25 °C 220 nm		Branched Dextrans 1000-30,000	Linear PEG/PEO 500-15,000

Protein Calibration Curves for BioSuite High Resolution (HR) SEC Columns

Sample:	peroxidase (n (MW 670,000 Da), IgG (MW 156,000 E 40,200 Da), beta lactoglobulin (MW 18, Da), cytochrome c (12,400 Da), glycine	400 Da), myoglobin (MW 16,900 D	
Columns:	BioSuite HR	SEC, 450 Å, 8 μm, 7.8 × 300 mm (p/n: 14 SEC, 250 Å, 5 μm, 7.8 × 300 mm (p/n: 16 ; 125 Å, 5 μm, 7.8 × 300 mm (p/n: 18600	86002165)	
Eluent:	0.1 M sodium	phosphate, pH 7.0 containing 0.3 M sc	odium chloride	
Flow rate:	1.0 mL/min			
10001010101	NO THE/THIN			
Column temp.:				
Column temp.:				
	25 °C 220 nm	Globular Protein MW Range	Branched Dextrans	Linear PEG/PEO
Column temp.: UV detection:	25 °C 220 nm	Globular Protein MW Range 5000-150,000	Branched Dextrans 1000-30,000	Linear PEG/PE0 500-15,000
Column temp.: UV detection: Colu	25 °C 220 nm mn ± 125 Å			

Protein Calibration Curves for BioSuite Standard SEC Columns

Sample:	peroxidase	ulin (MW 670,000 Da), IgG (MW 156,000 e (40,200 Da), beta lactoglobulin (MW18 0 Da), cytochrome <i>c</i> (12,400 Da), glycin	,400 Da), myoglobin (MW 16,900 D	
Columns:	BioSuite Sl	EC, 450 Å, 13 μm, 7.5 × 300 mm (p/n: 18/ EC, 250 Å, 13 μm, 7.5 × 300 mm (p/n: 18/ EC, 125 Å, 10 μm, 7.5 × 300 mm (p/n: 186	6002170)	
luent:	0.1 M sodiu	um phosphate, pH 7.0 containing 0.3 M	sodium chloride	
low rate:	1.0 mL/mir	1		
Column temp.:	25 °C			
JV detection:	220 nm			
Colun	חר	Globular Protein MW Range	Branched Dextrans	Linear PEG/PEO
BioSuite	125 Å	5000-150,000	1000-30,000	500-15,000
BioSuite	250 Å	10,000-500,000	2000-70,000	1000-35,000
BioSuite	450 Å	20,000-1,000,000	4000-500,000	2000-250,000

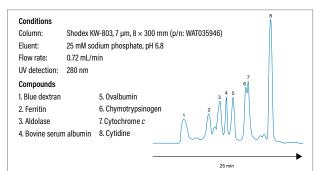
and 21.5 mm preparative columns are available.

Ordering Information

BioSuite SEC HPLC and UHPLC Columns

Description	Matrix	Diameter Width	Diameter Length	Column Volume	Suggested Volume Load for Maximum Multicomponent Resolution*	Multicomponent Resolution**	P/N
BioSuite 125 Å, 4 µm UHR SEC	Silica	4.6 mm	300 mm	4.98 mL	Less than 8 mg/mL	Less than 40 µL	186002161
BioSuite 250 Å, 4 µm UHR SEC	Silica	4.6 mm	300 mm	4.98 mL	Less than 8 mg/mL	Less than 80 µL	186002162
BioSuite UHR Guard SEC	Silica	4.6 mm	35 mm	-	-	-	186002163
BioSuite 125 Å, 5 µm HR SEC	Silica	7.8 mm	300 mm	14.33 mL	Less than 8 mg/mL	Less than 200 µL	186002164
BioSuite 250 Å, 5 µm HR SEC	Silica	7.8 mm	300 mm	14.33 mL	Less than 8 mg/mL	Less than 200 µL	186002165
BioSuite 450 Å, 8 µm HR SEC	Silica	7.8 mm	300 mm	14.33 mL	Less than 8 mg/mL	Less than 200 µL	186002166
BioSuite HR Guard SEC	Silica	6 mm	40 mm	-	-	-	186002167
BioSuite 125 Å, 10 µm SEC	Silica	7.5 mm	300 mm	13.25 mL	Less than 8 mg/mL	Less than 200 µL	186002168
BioSuite 125 Å, 13 µm SEC	Silica	21.5 mm	300 mm	108.9 mL	Less than 8 mg/mL	Less than 1.6 mL	186002169
BioSuite 250 Å, 10 µm SEC	Silica	7.5 mm	300 mm	13.25 mL	Less than 8 mg/mL	Less than 200 µL	186002170
BioSuite 250 Å, 13 µm SEC	Silica	21.5 mm	300 mm	108.9 mL	Less than 8 mg/mL	Less than 1.6 mL	186002171
BioSuite 450 Å, 13 µm SEC	Silica	7.5 mm	300 mm	13.25 mL	Less than 8 mg/mL	Less than 200 µL	186002172
BioSuite 450 Å, 17 µm SEC	Silica	21.5 mm	300 mm	108.9 mL	Less than 8 mg/mL	Less than 1.6 mL	186002173
BioSuite Guard SEC	Silica	7.5 mm	75 mm	_	_	_	186002174
BioSuite Guard SEC	Silica	21.5 mm	75 mm	-	-	_	186002175

* Using a BSA protein standard in a 50 mM phosphate buffer containing salt (either 0.1 M NaCl or 0.1 M Na₂SO₄) eluent. Useful protein mass loads will vary depending upon separation eluent, complexity of sample, and type of proteins contained in mixture. In general, maximum component resolution is obtained by injecting the smallest possible volume of a dilute protein solution.


** Operating flow rates for BioSuite Ultra-High Resolution (UHR) SEC Columns (4.6 mm l.D.) are from 0.1–0.4 mL/min. Use of an HPLC system (e.g., Waters Alliance HPLC System) capable of operating at these flows is essential for optimal UHR SEC Column performance.

Protein-Pak and Shodex Size-Exclusion HPLC Columns

Waters offers two families of packings for size-exclusion chromatography. Protein-Pak packings are based on a 10 µm, diolbonded silica and are available in a selection of pore sizes and column configurations. In addition, Waters offers a series of Shodex 7 µm, high-resolution, gel filtration packings.

The Protein-Pak Size-exclusion Columns can be expected to resolve proteins that differ in molecular weight by a factor of two and to distinguish proteins differing by as little as 15% in molecular weight. The degree of resolution is more dependent on the sample mass and volume than the interaction between the sample and the stationary phase. Ideally, there should be no interaction between the stationary phase and the sample molecules. Secondary interactions are most often ionic and can, therefore, be reduced by increasing the ionic strength of the mobile phase. Typical, salt concentrations range to 0.2–0.5 M NaCl. It may also be useful in some cases to consider adding 10–20% methanol to eliminate hydrophobic and other hydrogenbonding interactions.

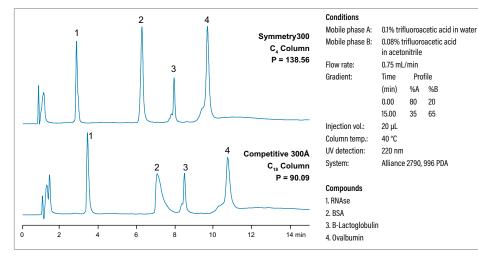
Standard Protein Mix on KW-803 Column

This gel-filtration separation of protein standards demonstrates the ability to separate proteins in a wide range of molecular weights in minutes for high sensitivity analysis or protein isolation up to the milligram scale.

Ordering Information

Protein-Pak SEC HPLC	Columns	and	Guards
----------------------	---------	-----	--------

Steel Column	Dimension	MW Range	P/N
Protein-Pak 60	7.8 × 300 mm	1000-20,000	WAT085250
Protein-Pak 60	19 × 300 mm	1000-20,000	WAT025830
Protein-Pak 125	7.8 × 300 mm	2000-80,000	WAT084601
Protein-Pak 125	19 × 300 mm	2000-80,000	WAT025831
Protein-Pak 300SW	n-Pak 300SW 7.5 × 300 mm		WAT080013
Protein-Pak 125 Sentry ((requires holder)	186000926		
Sentry Universal Guard	Column Holder		WAT046910
			5.01
Glass Column	Dimension	MW Range	P/N
Protein-Pak 200SW	8 × 300 mm	500-60,000	WAT011786
Protein-Pak 300SW	8×300 mm	10,000-300,000	WAT011787


Shodex Size-Exclusion and Anion-Exchange HPLC and UHPLC Columns

Description	Particle Size	Dimension	MW Range	P/N
Protein KW-802.5	7 µm	8 × 300 mm	100-50,000	WAT035943
Protein KW-803	7 µm	8 × 300 mm	100-150,000	WAT035946
Protein KW-804	7 µm	8 × 300 mm	500-600,000	WAT036613

Symmetry300 C₄ HPLC and UHPLC Columns

Compared to our Protein BEH C₄, 300 Å offerings, Symmetry300 C₄ particles are 100% silicabased and are synthesized using ultrapure organic reagents resulting in high-purity material with very low silanol activity for outstanding peptide and protein separations and recoveries.

Protein: Symmetry300 C₄ vs. Competitors

300 Å pore for peptide and protein applications

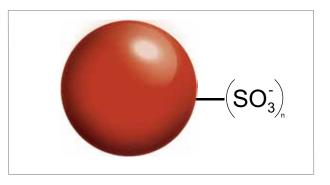
- Fully endcapped to minimize undesired secondary interactions
- Alternative separation selectivity compared to Waters BEH C₄, 300 Å hybrid material
- QC tested with peptide samples to help ensure excellent batch-tobatch consistency

Compared to many competitive 100% silica-based C₁₈ columns, Waters proprietary bonding and end-capping technologies help deliver improved peak shape with less undesired tailing.

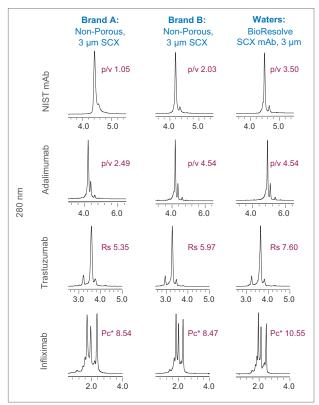
Ordering Information

C ₄	Particle Si	ze: 3.5 µm	Particle Size: 5 µm	
	Dimension	P/N	Dimension	P/N
	2.1 × 150 mm	186000276	2.1 × 150 mm	186000285
	3.9 × 150 mm	186000277	3.9 × 150 mm	186000286
	4.6 × 50 mm	186000278	4.6 × 50 mm	186000287
	4.6 × 150 mm	186000279	4.6 × 150 mm	186000288
	4.6 × 250 mm	186000280	4.6 × 250 mm	186000289
	19 × 10 mm	186000281		
	19 × 50 mm	186000282		
	19 × 100 mm	186000283		

CHARGE-VARIANT AND ION-EXCHANGE ANALYSIS

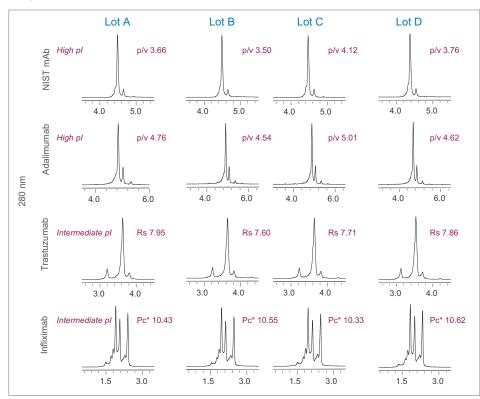

Ion-Exchange (IEX) separations are most commonly performed using gradients of increasing salt, changing pH, or simultaneous salt increases and pH changes with less charged protein species eluting prior to more highly charged molecules. Based on protein type and separation pH, either an anion or cation exchanger is selected for the separation. In addition, gradient duration, buffer composition and pH, flow rate, as well as separation temperature all play an important part in obtaining needed protein separations.

BioResolve SCX mAb Columns

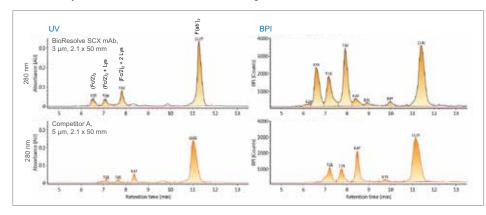

Charge variant profiling is one of several important characterization techniques performed on monoclonal antibody biotherapeutics. To help ensure that reliable results are obtained in these types of analyses, Waters developed corrosion-resistant columns containing BioResolve SCX mAb, non-porous, polymer-based particles grafted with a rigorously-optimized, multicomponent network of negatively charged sulfonic acid ligands. This innovative column technology delivers high-resolution, charged-based separations of mAbs in both LC and LC-MS applications using both salt and pH gradient elution.

Benefits include:

- Strong-cation exchanger based on non-porous (NP) polymeric particles that deliver high mechanical strength and chemical tolerance for LC or LC-MS charge based separations
- Developed through extensive prototyping and comprehensive testing with a wide range of mAbs and separations based on both salt and pH-gradient chromatography
- Based on a non-porous, 3 µm particle for optimal diffusion kinetics; high pressure capability; and amenability to HPLC, UHPLC, and UPLC systems
- Quality-control tested with the mAb Charge Variant Standard (derived from NIST mAb Reference Material 8671) to help ensure batch-to-batch column consistency



LC Analysis of Monoclonal Antibodies - BioResolve SCX mAb Column vs. Commercially Available, Non-Porous, Cation-Exchange Columns


Comparative peak valley (P/V) ratios, component resolution (Rs), and measured peak capacities of four biotherapeutic antibodies separated on Waters vs. commercially available, cation-exchange columns noting higher quality data obtained on a BioResolve SCX mAb, 3 μ m Column. All separations were performed at 30 °C on an ACQUITY UPLC H-Class Bio System at the same linear velocity (i.e., 0.72 mL/min for 4.6 × 50 mm and 0.54 mL/min for 4 × 50 mm columns) with appropriately scaled injection volumes using a 10 min linear gradient from 10 mm to 200 mM NaCl contained in 20 mM MES, pH 7 buffer.

Outstanding Batch-to-Batch Reproducibility of BioResolve SCX mAb Cation-Exchange Columns in the Analysis of Four mAbs

Comparative peak valley (P/V) ratios, component resolutions (Rs), and measured peak capacities of four monoclonal antibodies on four different manufactured batches of BioResolve SCX mAb, 3 µm, 4.6 × 50 mm Columns. All separations were performed at 30 °C on an ACQUITY UPLC H-Class Bio System at 0.72 mL/min using a 10 min linear gradient from 10 mm to 200 mM NaCl contained in 20 mM MES, pH 7 buffer.

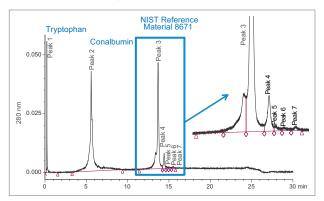
LC-MS Analysis of IdeS Digested Infliximab on a BioResolve SCX mAb Column vs. an Alternative Commercially Available, Non-Porous, Cation-Exchange Column

Higher resolution and higher recovery separations using volatile, MS-compatible mobile phases and a BioResolve SCX mAb, 3 µm, 2. 1 × 50 mm Column. Separations were performed at 30 °C on an ACQUITY UPLC I-Class System at 0.11 mL/min using an 18.3 min linear gradient from 15-50% buffer B (buffer A: 50 mM ammonium formate, pH 3.9 and buffer B: 500 mM ammonium acetate, pH 7.4).

mAb Charge-Variant Standard

The mAb Charge Variant Standard is a proficiency and suitability standard used to confirm and monitor column and instrument performance. This standard is formulated as a filtered and stabilized mixture of a void marker (tryptophan), conalbumin from chicken egg white, and NIST Reference Material 8671 (NIST mAb, a humanized IgG1 κ expressed from a murine cell line). Every vial contains approximately 0.5 μ g of tryptophan, 200 μ g of conalbumin, and 100 μ g of NIST mAb. Shown on the right is a pH-gradient chromatogram example of the mAb Charge Variant Standard as obtained with BioResolve CX pH Concentrates.

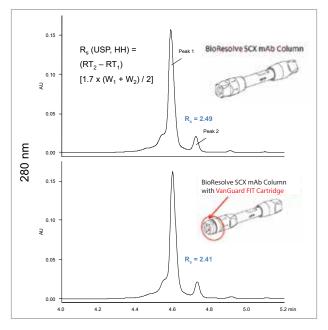
VanGuard FIT Cartridge


The injection of column fouling excipients (e.g., polysorbate) and particles (e.g., insoluble sample or microbes) is known to cause the premature failure of columns. Careful sample and eluent preparation helps address this concern. Yet experienced chromatographers recognize the value of using a guard column, containing the same material as the analytical column, to further help ensure maximum column life. Traditional guard columns help protect the analytical column. However, they are relatively expensive and introduce compromising levels of additional dispersion.

To address these shortcomings, Waters has enhanced the value of the existing VanGuard Technology by introducing the novel VanGuard Fully Integrated Technology (FIT) Cartridge - a simplified guard column design that maximizes column life without degrading biomolecule component resolution. Based on customer preference, the BioResolve SCX mAb Column can be purchased with or without a VanGuard FIT Cartridge.^(1, 2)

¹ The VanGuard FIT Cartridge contains the same BioResolve SCX mAb, 3 µm material as used in an analytical BioResolve SCX mAb Column.

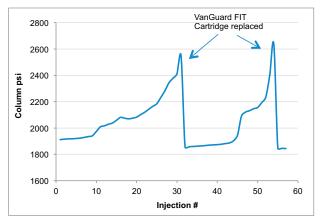
² Replacement BioResolve SCX mAb, 3 µm VanGuard FIT Cartridges cannot be used on columns that lack the VanGuard FIT Cartridge option.


Separation of Waters mAb Charge Variant Standard on a BioResolve SCX mAb, 3 µm Column

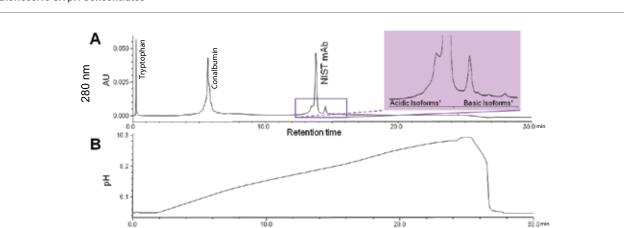
Separation of the mAb Charge Variant Standard on a BioResolve SCX mAb, 3 µm, 4.6 × 50 mm Column with a VanGuard FIT Cartridge showing excellent resolution of various mAb charge variant species. Separation was performed on an ACQUITY UPLC H-Class System at 30 °C and at 1.44 mL/min using a 24 min linear gradient from pH 5 to 10.2.

*The interpretation of charge variants was extrapolated from BioDrugs, 2016, 30, 321–338.

No Compromise Column Protection and Extended Lifetimes with VanGuard FIT Enhancement


Separation of NIST mAb Reference Material 8671 (12.5 µg injected) on a BioResolve SCX mAb, 3 µm, 4.6 × 50 mm Column with and without an Integrated VanGuard FIT Cartridge. All separations were performed on an ACQUITY UPLC H-Class Bio System at 0.96 mL/min using a 7.5 min linear gradient from 10 mm to 200 mM NaCl contained in 20 mM MES, pH 6 buffer.

When chromatography degrades from unintentional fouling (e.g., injections of particulates originating from a sample, LC system, and/or mobile phase), the VanGuard FIT Cartridge can be easily changed with available replacements to restore column performance and extend the life of the analytical column.

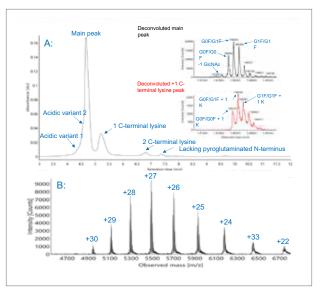

BioResolve CX pH Buffers

While ion-exchange chromatography using a gradient of increasing salt concentration is commonly used for charge variant profiling of mAb-based therapeutics, it often requires the optimization of methods for each individual sample. By comparison, use of a more universal pH gradient offers the potential of being applicable to many different samples. The BioResolve CX pH Concentrates facilitate obtaining high-resolution separations with BioResolve SCX mAb, 3 µm Columns. Together, the two technologies provide a robust and simple-to-use pH gradient based method for charge variant analysis of different mAb species. Each set of the carefully formulated concentrates was designed so users can quickly prepare mobile phases of controlled pH and ionic strength to yield robust cation-exchange separations. Each concentrate is accurately packaged as a 100 mL volume of a 10x concentrated solution that can be prepared into 1 L of mobile phase by means of a simple 10-fold aqueous dilution. The resulting buffers can be used in a universally applicable binary gradient separation method that runs from pH 5.0 to 10.2.

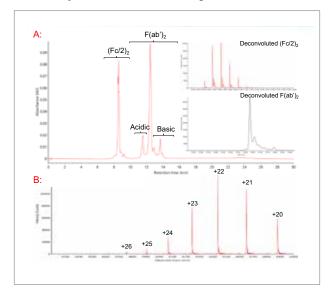
Extension of BioResolve SCX mAb Column by Replacement of VanGuard Fit Cartridge on Particulate Fouled Column

Repeated 5 μ L injections of 20 mM sodium phosphate, pH 6.8 containing 0.1 μ m latex particles onto a BioResolve SCX mAb, 3 μ m, 4.6 × 50 mm Column with VanGuard FIT. Testing was performed on an ACQUITY UPLC H-Class System at 0.50 mL/min using 20 mM sodium phosphate, pH 6.8 with injections made every 5 min noting pressure increases that were reduced when the existing VanGuard FIT Cartridge was replaced with a new one at injections #30 and #54. Note: 0.1 μ m latex particles were selected due to their size being similar to bacterial cells (0.2 to 10 μ m) that are a potential source of column fouling if present in eluents that lack bacteriostatic agents.

Separation of mAb Charge Variant Standard on a BioResolve SCX mAb, 3 µm Column Using a Turnkey pH Gradient Generated Using BioResolve CX pH Concentrates


Representative ion-exchange chromatogram (A) and pH trace (B) for a separation of the mAb Charge Variant Standard (p/n: 186009065) on a BioResolve SCX mAb, 3 µm, 4.6 × 50 mm Column. The data was obtained at 30 °C on an ACQUITY UPLC H-Class Bio System using a 24 min linear pH gradient from pH 5.0 to 10.2 at a flow rate of 1.44 mL/min. Note: the pH trace was obtained with GE Healthcare Life Sciences Monitor pH/C-900.

Retention time


LC-MS ANALYSIS WITH IONHANCE CX-MS PH BUFFERS

Native protein analysis by cation-exchange chromatography coupled to mass spectrometry (CX-MS) is a robust way to characterize microheterogeneities in biopharmaceuticals, particularly monoclonal antibodies (mAbs), from research through final commercialization. To address this need, Waters developed IonHance CX-MS pH Buffers (Concentrates A and B) for use with the BioResolve SCX mAb, 3 µm Columns.

The IonHance CX-MS pH 10x concentrates were purposely designed to deliver robust, charge-based separations and high-quality MS spectral data. They are shipped as 100 mL aliquots in 1 L trace metal certified low-density polyethylene bottles (confirmed <100 ppb levels of sodium, potassium, and calcium). Concentrate A is formulated to yield a pH 5.0 mobile phase and Concentrate B is formulated to generate a higher ionic strength pH 8.5 mobile phase. Both concentrates are prepared with 20% acetonitrile to minimize bacterial growth. LC-MS Analysis of Intact Adalimumab Using a BioResolve SCX mAb Column and IonHance CX-MS pH Buffer

Representative UV chromatogram (280 nm) of adalimumab with deconvolution of base and +1 lysine (K) peak between 147.8-148.8 kDa, as well as mass spectra for base peak with m/z window of 4600-7000. The data were obtained with a BioAccord System comprised of an ACQUITY UPLC I-Class PLUS System coupled to an ACQUITY TUV Detector that was set to 280 nm, fitted with a 2.1 x 50 mm BioResolve SCX mAb Column. Buffer A = 10 mM ammonium acetate, pH 5.00. Buffer B = 75 mM ammonium acetate, pH 8.38.

LC-MS Analysis of Non-Reduced IdeS Digested Trastuzumab

(A) Representative UV chromatogram of IdeS digested Trastuzumab with deconvolution of main (Fc/2)2 peak between 50.1-52.0 kDa and the main F(ab')2 peak between 97.0-98.0 kDa.(B) Mass spectra for primary F(ab')2 peak with m/z window of 3200-5000. The data were obtained with a BioAccord System comprised of an ACQUITY UPLC I-Class PLUS System coupled to an ACQUITY RDa Mass Detector fitted with a BioResolve SCX mAb, 2.1 x 50 mm Column.

Ordering Information

BioResolve SCX mAb Columns, Method Validation Kits, Cartridges, and Standards

Column		Particle Size: 3 µm	
	Dimension	P/N (1/pk) with VanGuard FIT and mAb Charge Variant Standard	P/N (1/pk) with mAb Charge Variant Standard
	2.1 × 50 mm	176004341	176004342
	$2.1 \times 100 \text{ mm}$	176004343	176004344
	4.6 × 50 mm	176004346	176004347
	4.6 × 100 mm	176004348	176004349
Method Validation Kit*		Particle Size: 3 µm	
	Dimension	P/N (3/pk) with VanGuard FIT and mAb Charge Variant Standard	P/N (3/pk) with mAb Charge Variant Standard
	2.1 × 100 mm	176004345	-
	$4.6 \times 100 \text{ mm}$	-	176004350
Description			P/N
BioResolve SCX mAb VanGuard FIT Cartridge, 3 µn	n, 3.9 × 5 mm, 3/pk**		186009062
BioResolve SCX mAb VanGuard FIT Replacement C	Cartridge, 3 µm, 2.1 × 9	5 mm, 3/pk**	186009061
mAb Charge Variant Standard			186009065
BioResolve CX pH Concentrate A, pH 5 (100 mL bot	ttle of 10X concentrat	e)	186009063
BioResolve CX pH Concentrate B, pH 10.2 (100 mL b	bottle of 10X concentr	rate)	186009064
BioResolve CX pH Concentrate Kit			176004340
Certified LDPE Container, 1000 mL			186009110

 $\ast~$ Method Validation Kit (MVK) contains three columns from three different batches.

**VanGuard FIT Replacement Cartridges can ONLY be used on BioResolve SCX mAb Columns that have VanGuard FIT component.

BioResolve SCX mAb Startup Kits

Description	P/N
BioResolve SCX mAb, 3 µm, 2.1 × 50 mm Column w/ VanGuard FIT Cartridge; mAb Charge Variant Standard; BioResolve SCX pH Concentrates; and two Certified LDPE Containers	176004351
BioResolve SCX mAb, 3 μm, 2.1 × 50 mm Column; mAb Charge Variant Standard; BioResolve SCX pH Concentrates; and two Certified LDPE Containers	176004355
BioResolve SCX mAb, 3 μm, 2.1 × 100 mm Column w/VanGuard FIT Cartridge; mAb Charge Variant Standard; BioResolve SCX pH Concentrates; and two Certified LDPE Containers	176004352
BioResolve SCX mAb, 3 μm, 2.1 × 100 mm Column; mAb Charge Variant Standard; BioResolve SCX pH Concentrates; and two Certified LDPE Containers	176004356
BioResolve SCX mAb, 3 μm, 4.6 × 50 mm Column w/ VanGuard FIT Cartridge; mAb Charge Variant Standard; BioResolve SCX pH Concentrates; and two Certified LDPE Containers	176004353
BioResolve SCX mAb 3 μm, 4.6 × 50 mm Column; mAb Charge Variant Standard; BioResolve SCX pH Concentrates; and two Certified LDPE Containers	176004357
BioResolve SCX mAb, 3 µm, 4.6 × 100 mm Colum w/ VanGuard FIT Cartridge; mAb Charge Variant Standard; BioResolve SCX pH Concentrates; and two Certified LDPE Containers	176004354
BioResolve SCX mAb 3 μm, 4.6 × 100 mm Column; mAb Charge Variant Standard; BioResolve SCX pH Concentrates; and two Certified LDPE Containers	176004358

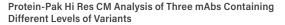
Ordering Information

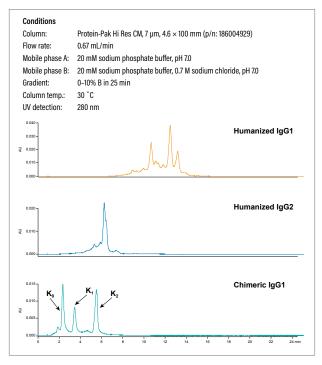
IonHance CX-MS pH Concentrates

Description	P/N
IonHance CX-MS pH Concentrate A in Certified LDPE Container	186009280
IonHance CX-MS pH Concentrate B in Certified LDPE Container	186009281
IonHance CX-MS pH Concentrates A&B Kit	176004498


IonHance CX-MS pH Concentrate and BioResolve SCX mAb Startup Kits

Description	P/N
Kit: IonHance CX-MS pH Concentrates A and B in certified LDPE containers; BioResolve SCX mAb, 3 µm, 2.1 x 50 mm Column with VanGuard FIT; and Humanized mAb Mass Check Standard	176004499
Kit: IonHance CX-MS pH Concentrates A and B in certified LDPE containers; BioResolve SCX mAb, 3 μm, 2.1 x 50 mm Column; and Humanized mAb Mass Check Standard	176004500
Kit: IonHance CX-MS pH Concentrates A and B in certified LDPE containers; BioResolve SCX mAb, 3 µm, 2.1 x 100 mm Column with VanGuard FIT; and Humanized mAb Mass Check Standard	176004501
Kit: IonHance CX-MS pH Concentrates A and B in certified LDPE containers; BioResolve SCX mAb, 3 μm, 2.1 x 100 mm Column; and Humanized mAb Mass Check Standard	176004502


Protein-Pak Hi Res Ion-Exchange (IEX) Columns for ACQUITY UPLC Applications


Protein-Pak Hi Res Ion-Exchange (IEX) Columns were developed to assist in the characterization of recombinant proteins, monoclonal antibodies, and other biological compounds. The non-porous, high compound binding capacity of these particles yields outstanding resolution of charged species in less time compared to use of many traditional porous IEX offerings. In addition, quality control testing with defined protein standards helps ensure consistent batch-to-batch performance.

- Designed for the characterization of protein charge variants and other biocompounds
- Two cation-exchangers (carboxymethyl and sulfopropyl) and one anion exchanger (quaternary ammonium) that address selectivity needs
- Non-porous, high-capacity stationary phases deliver fast separations that address high-throughput needs
- QC tested with protein standards to ensure batch-to- batch consistency
- eCord enabled to help monitor column use on ACQUITY UPLC Systems

Cation-exchange chromatography is a useful tool for the characterization and quantitation of mAb or recombinant protein variants. Use of Waters Protein-Pak Hi Res CM Column on an ACQUITY UPLC System increases sample throughput while maintaining resolution between intended product and undesired variants.

Sequence, production, storage, and shipping conditions influence the degree of variants contained in a biotherapeutic protein. Waters Protein-Pak Hi Res CM Column can successfully resolve variations that may involve as little as a single amino acid change (K0 = No terminal lysines, K1 = One terminal lysine, and K2 = Two terminal lysines).

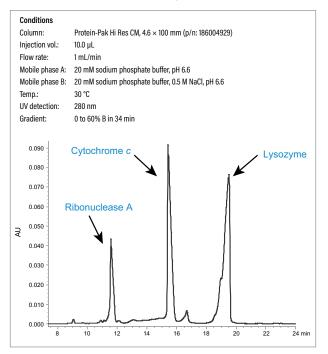
Ordering Information

Protein-Pak Hi Res UPLC Columns

Description	Particle Size	Dimension	P/N (1/pk)
Protein-Pak Hi Res CM	7 µm	4.6 × 100 mm	186004929
Protein-Pak Hi Res SP	7 µm	4.6 × 100 mm	186004930
Protein-Pak Hi Res Q	5 µm	4.6 × 100 mm	186004931

Note: Only when Protein-Pak Hi Res IEX Columns are combined with the ACQUITY UPLC System are the full performance benefits realized. See Waters service notes, p/n: 715002147A for ACQUITY UPLC System configuration guidelines for ion-exchange chromatography.

Ion-Exchange Standards


Benchmarking, Method Development, and Troubleshooting

Ion-exchange standards are sets of standards that allow the user to benchmark anion- or cation-exchange columns on a regular basis in order to have confidence in results as well as providing a troubleshooting tool for any issues that may arise.

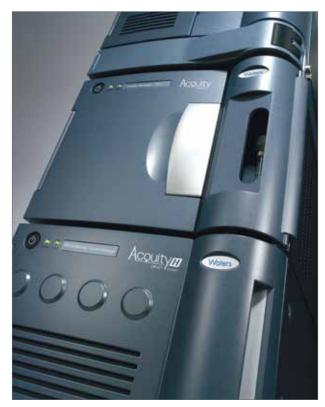
- IEX Anion Test Standard
- IEX Cation Test Standard

Protein-Pak Hi Res CM Column using the IEX Cation Test Standard

Waters offers a variety of carefully formulated and QC-tested anion-exchange and cation-exchange protein standards to help chromatographers confirm adequate performance of their IEX column and LC system prior to the analyses of potentially highly valued samples.

Ordering Information

IEX Standards


Description	P/N (1/pk)
IEX Anion Test Standard	186006869
IEX Cation Test Standard	186006870

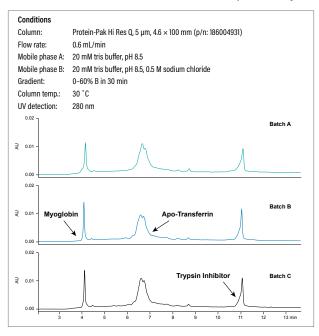
Application of Waters UPLC Technology for Biotherapeutic Characterization

ACQUITY UPLC allows analytical chemists to reach far beyond conventional LC separations and has proven itself to be an asset to laboratories around the world. UPLC sets new standards in resolution, sensitivity, and throughput by being the first holistically-designed system that maximizes for rapid, high-resolution analyses. It has fueled hundreds of peer-reviewed papers, helps laboratories conserve resources, and has served the needs of regulatory agencies around the globe. ACQUITY UPLC simultaneously makes your laboratory more sustainable and more efficient.

Manufacturing Consistency for Enhanced Assurance

The ability to obtain the same high-quality separations regardless of column lot is of critical importance to the successful development and commercialization of biotherapeutics. Each batch of Protein-Pak Hi Res IEX material is tested with a relevant mixture of protein standards to help ensure consistent column-tocolumn performance.

ACQUITY UPLC Technology for biotherapeutic characterization.

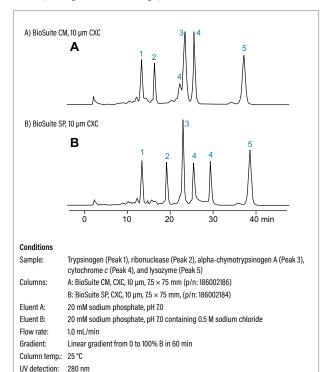

Novel IEX Particles Ideal for Biomolecule Characterizations

Protein-Pak Hi Res IEX Columns contain non-porous, pH tolerant, hydrophilic particles whose surface consists of a multi-layered network of either anion (5 μ m) or cation (7 μ m) exchange groups. This innovative particle and bonding chemistry produces particles with greater protein loading capacities than found on many traditional mono-disperse, non-porous resins. This translates into columns that can resolve complex mixtures of biomolecules in comparatively short times compared to use of alternative porous or non-porous IEX Column offerings.

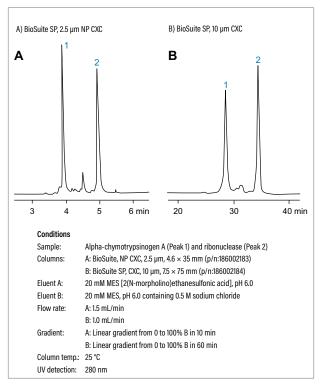
Column	Protein-Pak Hi Res Q	Protein-Pak Hi Res CM	Protein-Pak Hi Res SP
Ion Exchange	Strong Anion	Weak Cation	Strong Cation
Functional group	Quaternary ammonium	Carboxymethyl	Sulfopropyl
Matrix	Hydrophilic polymer	Hydrophilic polymer	Hydrophilic polymer
Particle size	5 µm	7 µm	7 µm
Pore size	Non porous	Non porous	Non porous
I.D. × L	4.6 imes 100 mm	4.6 imes 100 mm	4.6 × 100 mm
Counter ion	CI-	Na+	Na+
pH range	3-10	3-10	3–10
Temperature	10-60 °C	10-60 °C	10-60 °C
pKa	10.5	4.9	2.3
Flow rates	0.3-0.6 mL/min	0.5–1.4 mL/min	0.5–1.4 mL/min
Approximate protein binding capacity in mgs per column (i.e., BSA for Hi Res Q column, lysozyme for Hi Res CM and Hi Res SP columns)*	58	33	25

* For optimal resolution of complex samples, do not exceed 20% of the column's protein binding capacity.

Protein-Pak Hi Res IEX Column Batch-to-Batch Reproducibility



Each batch of Protein-Pak Hi Res SP, CM, and Q Column packing material is chromatography tested using a relevant protein standard mixture to help ensure consistent and predictable performance.


BioSuite Ion-Exchange HPLC Columns

BioSuite Ion-Exchange (IEX) Column offerings include strong and weak cation (CXC) and anion exchangers (AXC) bonded to a pH stable (i.e., pH 2–12), methacrylic ester-based polymeric resin. The availability of four separation chemistries provides chromatographers with the flexibility required to develop methods that separate proteins or peptides based upon minor charge differences. Non-porous (NP) and porous IEX columns are also available. Speed and superior chromatographic resolution are possible using the NP IEX offerings. Waters' porous ion exchangers are available for applications requiring greater protein or peptide binding capacity. In addition, selected BioSuite Ion-Exchange Columns are offered in PEEK hardware as well as in 21.5 mm I.D. preparative column sizes.

Protein Selectivity Differences Observed by Ion-Exchange Chromatography on BioSuite CM (Weak-Cation Exchange) vs. SP (Strong-Cation Exchange) Columns

BioSuite strong (SP) and weak (CM) cation-exchange columns deliver different separation selectivities useful when developing a method to adequately separate a complex biocompound mixture. Enhanced Compound Resolution by Ion-Exchange Chromatography on BioSuite SP Non-Porous (NP) vs. Porous CXC Columns

Use of 2.5 µm, superficially-porous particles, contained in the BioSuite SP NP Columns, can deliver improved peptide component resolution and in less time (left figure) compared to the use of a BioSuite SP, CXC column that contains 10 µm, fully-porous particles (right figure).

Ordering Information

BioSuite pC₁₈ and pPhenyl HPLC and UHPLC Columns

Description	Matrix	Dimension	P/N (1/pk)
BioSuite pC ₁₈ , 2.5 µm NP RPC	Polymer	4.6 × 35 mm	186002152
BioSuite pC ₁₈ , 500, 7 µm RPC	Polymer	2.0 × 150 mm	186002153
BioSuite pC ₁₈ , 500, 7 µm RPC	Polymer	4.6 × 150 mm	186002154
BioSuite pC ₁₈ , 500, 13 µm RPC	Polymer	21.5 × 150 mm	186002155
BioSuite pPhenyl, 1000, 10 µm RPC	Polymer	2.0 × 75 mm	186002156
BioSuite pPhenyl, 1000, 10 µm RPC	Polymer	4.6 × 75 mm	186002157
BioSuite pPhenyl, 1000, 13 µm RPC	Polymer	21.5 × 150 mm	186002158

BioSuite IEX HPLC Columns

Description	Matrix	Pore Size	Exclusion Limit (Daltons) Against Polyethylene Glycol	Dimension	Column Volume (mL)	# Approx Protein Binding Capacity Per Pre- Packed Column	P/N
BioSuite Q-PEEK, 10 µm AXC	Polymer	4000 Å	>5,000,000	4.6 × 50 mm	0.83	58 mg ¹	186002176
BioSuite SP-PEEK, 7 µm CXC	Polymer	1300 Å	>4,000,000	4.6 × 50 mm	0.83	58 mg ²	186002182
BioSuite DEAE, 2.5 µm NP AXC	Polymer	n/a	500	4.6 × 35 mm	0.58	2.9 mg ¹	186002179
BioSuite SP, 2.5 µm NP CXC	Polymer	n/a	500	4.6 × 35 mm	0.58	2.9 mg ³	186002183
BioSuite Q, 10 µm AXC	Polymer	1000 Å	1,000,000	7.5 × 75 mm	3.31	331 mg ¹	186002177
BioSuite Q, 13 µm AXC	Polymer	1000 Å	1,000,000	21.5 × 150 mm	54.45	5445 mg ¹	186002178
BioSuite DEAE, 10 µm AXC	Polymer	1000 Å	1,000,000	7.5 × 75 mm	3.31	99 mg ¹	186002180
BioSuite DEAE, 13 µm AXC	Polymer	1000 Å	1,000,000	21.5 × 150 mm	54.45	1633 mg ¹	186002181
BioSuite SP, 10 µm CXC	Polymer	1000 Å	1,000,000	7.5 × 75 mm	3.31	132 mg ³	186002184
BioSuite SP, 13 µm CXC	Polymer	1000 Å	1,000,000	21.5 × 150 mm	54.45	2178 mg ³	186002185
BioSuite CM, 10 µm CXC	Polymer	1000 Å	1,000,000	7.5 × 75 mm	3.31	149 mg ³	186002186
BioSuite CM, 13 µm CXC	Polymer	1000 Å	1,000,000	21.5 × 150 mm	54.45	2450 mg ³	186002187

¹ Data generated with BSA.

² Data generated with gamma globulin.

³ Data generated with hemoglobin.

Note: For best resolution of complex samples, do not exceed 20% of the column's protein binding capacity.

Protein-Pak PW Series Columns

Waters also offers a line of 10 μ m polymer-based ionexchangers pre-packed in steel or glass columns. The Protein-Pak 5PW Columns are available as DEAE and SP ion exchangers. These columns can be used on HPLC and FPLC systems in both analytical and preparative configurations.

Approximate Protein Binding Capacity per Pre-Packed Column						
		Protein-Pak HR Packing				
Dimension	Q	DEAE	SP	СМ		
$5 \times 50 \text{ mm}$	60 mg	40 mg	40 mg	25 mg		
$5 \times 100 \text{ mm}$	130 mg	150 mg	80 mg	45 mg		
10 × 100 mm	500 mg	300 mg	300 mg	180 mg		

Ordering Information

Protein-Pak PW HPLC Column Series

Description	Dimension	P/N
Polymeric Weak Anion-Exchanger	7.5 × 75 mm	WAT088044
Protein-Pak DEAE 5PW Glass Column	8 × 75 mm	WAT011783
Protein-Pak DEAE 5PW Steel Column	21.5 × 150 mm	WAT010640
Polymeric Strong Cation Exchanger	7.5 × 75 mm	WAT088043
Protein-Pak SP 5PW Glass Column	8 × 75 mm	WAT011784

Protein-Pak High Resolution (HR) Ion-Exchange Glass Columns

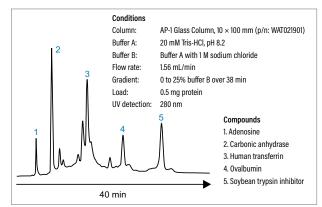
Waters Protein-Pak HR packing materials are based on rigid, hydrophilic, polymethacrylate particles with large 1000 Å pores. The naturally hydrophilic polymer reduces non-specific adsorption, resulting in quantitative recovery of protein mass and bioactivity. These packings are compatible with buffers in the pH range 2–12, and will withstand exposure to caustic solutions, such as 0.1–1.0 M sodium hydroxide and acetic solutions, such as 20% acetic acid, for cleaning purposes.

The Protein-Pak HR 8 μ m and 15 μ m packing materials are available pre-packed in Waters Advanced Purification (AP) Glass Columns in a choice of 5 mm l.D. (mini-column) or 10 mm l.D. by 100 mm in length. The 5 mm l.D. column is also available in a 50 mm length. These columns are compatible with any HPLC and FPLC system with the use of an adapter kit.

Protein-Pak HR ion exchangers are available with a Q functional group, a strong anion exchanger; DEAE, a weak anion exchanger; SP, a strong cation exchanger; and CM, a weak cation exchanger. The principal difference between a weak and strong ion exchanger does not lie in the protein binding capacity, but in the pH range of operation. Weak ion exchangers tend to have a more restricted useful pH range of operation.

Properties of Protein-Pak HR Columns					
	Protein-Pak Q HR1	Protein-Pak DEAE HR2	Protein-Pak CM HR3	Protein-Pak SP HR4	
Type of material	Polymer	Polymer	Polymer	Polymer	
Protein binding capacity	60 mg/mL	40 mg/mL	25 mg/mL	40 mg/mL	
lon-exchange capacity	200 µeq/mL	250 µeq/mL	175 µeq/mL	225 µeq/mL	
Nominal pK	11.7	9.0	5.7	2.2	
Typical protein recovery	>95%	>95%	>95%	>95%	
Typical recovery of biological activity	>90%	>90%	>90%	>90%	
pH stability	2-12	2-12	2-12	2-12	

1. For best resolution do not exceed 20% of the protein binding capacity.


2. Bovine serum albumin in 20 mM Tris/Cl pH 8.2 was used to measure protein

binding capacity of Protein-Pak Q and DEAE HR.

3. Cytochrome c in 25 mM MES pH 5.0 was used to measure protein binding capacity of Protein-Pak SP and CM HR.

4. Same conditions as CM. Protein binding capacity of Protein-Pak SP 40 HR is 20 mg/mL.

Waters Advanced Purification (AP) Glass Columns, containing Protein-Pak DEAE 15 µm particles, are well suited for the analysis and/or lab-scale purification of various protein mixtures.

Ordering Information

Protein-Pak HR Ion-Exchange Glass Columns

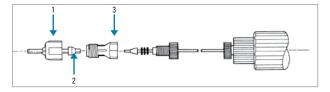
lon-Exchange Packing	Particle Size	Pore Size	Dimension	Particle Type	P/N
			5 × 50 mm	Polymeric	WAT039575
Protein-Pak 0 8HR	8 µm	1000 Å	5 × 100 mm	strong anion	WAT039630
Quini			10 × 100 mm	exchanger	WAT035980
Protein-Pak			$5 \times 50 \text{ mm}$	Polymeric	WAT039782
Q 15HR	15 µm	1000 Å	10 × 100 mm	strong anion exchanger	WAT037663
			$5 \times 50 \text{ mm}$	Polymeric	WAT039791
Protein-Pak DEAE 8HR	8 µm	1000 Å	5 × 100 mm	weak anion	WAT039783
DENE OTH			10 × 100 mm	exchanger	WAT035650
			$5 \times 50 \text{ mm}$	Polymeric	WAT039780
Protein-Pak DEAE 15HR	15 µm	1000 Å	5 × 100 mm	weak anion	WAT039786
			$10 \times 100 \text{ mm}$	exchanger	WAT038564
			$5 \times 50 \text{ mm}$	Polymeric	WAT039570
Protein-Pak SP 8HR	8 µm	1000 Å	$5 \times 100 \text{ mm}$	strong cation	WAT039625
			10 × 100 mm	exchanger	WAT035655
Protein-Pak SP 15HR	15 µm	1000 Å	10 × 100 mm	Polymeric strong cation exchanger	WAT038567
			$5 \times 50 \text{ mm}$	Polymeric	WAT039790
Protein-Pak CM 8HR	8 µm	1000 Å	5 × 100 mm	weak cation	WAT039785
			10 × 100 mm	exchanger	WAT035970
Protein-Pak CM 15HR	15 µm	1000 Å	5 × 50 mm	Polymeric weak cation exchanger	WAT039787

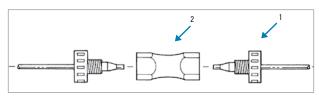
110

Advanced Purification (AP) Glass Columns

Waters AP series of glass columns are constructed of biocompatible glass and polymeric materials and can be easily used with silica, polymer, or soft gel packings. To optimize flow and ensure uniform sample distribution onto the packed bed, each column incorporates a distributor. A replaceable filter protects the packing from large particulate contaminants. Empty AP Glass Columns are available in a variety of sizes and utilize the same design to ensure predictable methods transfer among them. AP Glass Columns are compatible with both analytical and preparative HPLC and FPLC systems.

Ordering Information


Advanced Purification (AP) Glass Columns

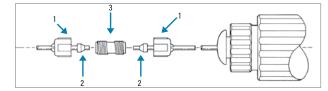

Dimension	Bed Volume (mL)	Flow Rate (mL/min)	Pressure Rating (psi/MPa)	P/N
5 × 50 mm	0.8-1.2	0-4	1500 psi/10 MPa	WAT064-01
$5 \times 100 \text{ mm}$	1.8-2.2	0-4	1500 psi/10 MPa	WAT064-02
10 × 100 mm	5-8	0-4	1500 psi/10 MPa	WAT021901
$10 \times 200 \text{ mm}$	13-16	0-4	1500 psi/10 MPa	WAT021902
10 × 300 mm	21-24	0-4	1500 psi/10 MPa	WAT021903
$10 \times 600 \text{ mm}$	45-48	0-4	1500 psi/10 MPa	WAT021906
$20 \times 100 \text{ mm}$	22-31	4-16	1000 psi/6.8 MPa	WAT027501
$20 \times 200 \text{ mm}$	53-62	4-16	1000 psi/6.8 MPa	WAT027502
$20 \times 300 \text{ mm}$	85-94	4-16	1000 psi/6.8 MPa	WAT027503
$20 \times 600 \text{ mm}$	179-188	4-16	1000 psi/6.8 MPa	WAT027506
50 × 100 mm	137-196	16-100	500 psi/3.4 MPa	WAT023321
50 × 200 mm	333-392	16-100	500 psi/3.4 MPa	WAT023332
50 × 300 mm	530-589	16-100	500 psi/3.4 MPa	WAT023323
$50 \times 600 \text{ mm}$	1118-1177	16-100	500 psi/3.4 MPa	WAT023326

Advanced Purification (AP) Glass Column Accessories and Spare Parts

Waters AP Glass Columns feature non-metallic construction and adjustable bed height with easy-to-use coarse and fine adjustments. The AP Glass Columns are available in a variety of dimensions.

Connection of an AP MiniColumn and an AP-1 Column to 1/8" OD Tubing

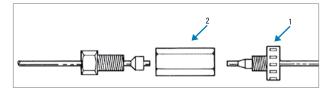
Ordering Information


AP MiniColumn

Description	Qty.	P/N
1. Collet and Nut Assembly (3/8–24)	10/pk	WAT005138
2. Ferrule 1/8" Tube	10/pk	WAT005136
3. Union 3/8–24 × 'Z' Fitting	5/pk	WAT005137
AP MiniColumn Accessories and Spare Parts		
Description	Dimension	P/N
Glass Tube	5 × 50 mm	WAT038802
	$5 \times 100 \text{ mm}$	WAT038803
Column Jacket	$5 \times 50 \text{ mm}$	WAT038804
Column Jacket	$5 \times 100 \text{ mm}$	WAT038805
Filters, 10/pk	-	WAT038806
O-Rings, 13/pk (includes 10 inlet/outlet and 3 funnel)	-	WAT038807
Inlet Connector Assembly	_	WAT038800

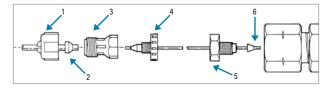
AP-1 Column

Description	Qty.	P/N
1 Compression Screw and Ferrule 'Z' Fitting, Plastic	1/pk	WAT082708
2 Union 'Z' Fitting, Plastic	1/pk	WAT082745
AP-1 Column Accessories and Spare Parts		
Description	Dimension	P/N
	10 × 100 mm	WAT021992
Olever Teles	10 × 200 mm	WAT022033
Glass Tube	10 × 300 mm	WAT022034
	$10 \times 600 \text{ mm}$	WAT022035
	10 × 100 mm	WAT021927
	10 × 200 mm	WAT021945
Plastic Shield	10 × 300 mm	WAT021946
	10 × 600 mm	WAT021947
0-Rings, 5/pk	-	WAT021907
Filters, 10/pk	_	WAT021910
Replacement Tubing (Tefzel) (1/16 in. 0.D. × 0.009 in. I.D. × 10 feet) (1.6 mm 0.D. × 0.23 mm I.D. × 3 m)	-	WAT021950
Inlet Connector Assembly	_	WAT021904


Connection of an AP-2 and an AP-5 Column to 1/8" O.D. Tubing

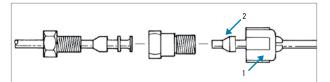
AP-2 Column

Description	Qty.	P/N
1. Collet and Nut Assembly (3/8–24)	10/pk	WAT005138
2. Ferrule 1/8" Tube	10/pk	WAT005136
3. Union 3/8-24 × 3/8-24	1/pk	WAT082734
AP-2 Column Accessories and Spare Parts		
Description	Dimension	P/N
	20 × 100 mm	WAT019891
Glass Tube	20 × 200 mm	WAT019892
	20 × 300 mm	WAT019893
	20 × 100 mm	WAT027542
Plastic Shield	20 × 200 mm	WAT027543
	20 × 300 mm	WAT027544
0-Rings, 5/pk	-	WAT027528
Filters, 2/pk	_	WAT027530
$\begin{array}{l} Replacement \ Tubing \ (Tefzel) \ (1/8 \ in. \ 0.D. \times \ 0.040 \ in. \\ I.D. \times \ 10 \ feet) \ (3.2 \ mm \ 0.D. \times \ 1.02 \ mm \ I.D. \times \ 3 \ m) \end{array}$	_	WAT023344
Inlet Connector Assembly	_	WAT027525
Distributors/Inserts, 5/pk	-	700004715


Connection of Pharmacia Fitting to 1/16" O.D. Tubing

AP-5 Column

Description	Qty.	P/N
1. Compression Screw and Ferrule 'Z' Fitting, Plastic	1/pk	WAT082708
2. Union, Plastic	1/pk	WAT021951
AP-5 Column Accessories and Spare Parts		
Description	Dimension	P/N
	50 × 100 mm	WAT019876
Glass Tube	50 × 200 mm	WAT019877
	50 × 300 mm	WAT019878
	50 × 100 mm	WAT023370
	50 × 200 mm	WAT023371
Plastic Shield	50 × 300 mm	WAT023372
	50 × 600 mm	WAT023373
0-Rings, 5/pk	-	WAT023345
Filter, 2/pk	_	WAT023343
Replacement Tubing (Tefzel) 1/8 in. 0.D. × 0.040 in. I.D. × 10 feet) (3.2 mm 0.D. × 1.02 mm I.D. × 3 m)	-	WAT023344
Inlet Connector Assembly	-	WAT023349
Outlet Connector Assembly	-	WAT023348
Collet and Nut Assembly	_	WAT023346
Ferrule, 10/pk	-	WAT023347
Funnel Assembly	_	WAT023396


Connection of a Protein-Pak Steel Column to 1/16" and 1/8" O.D. Tubing

Protein-Pak Steel Column

Description	Qty.	P/N
1. Collet and Nut Assembly (3/8–24)	10/pk	WAT005138
2. Ferrule 1/8" Tube	10/pk	WAT005136
3. Union 3/8–24 × 'Z' Fitting	5/pk	WAT005137
4. Compression Screw and Ferrule 'Z' Fitting, Plastic	1/pk	WAT082708
5. Compression Screw 'Z' Fitting, Steel	10/pk	WAT005070
6. Ferrule 1/16" Steel	10/pk	WAT005063

Connection of 1/8" or 1/16" Flanged Type Fitting to 1/8" O.D. Tubing

Flanged Type Fitting

Description	Qty.	P/N
1. Collet and Nut Assembly (3/8–24)	10/pk	WAT005138
2. Ferrule 1/8" Tube	10/pk	WAT005136

AccellPlus Ion-Exchange Packings

Solid-Phase Extraction for Protein Sample Preparation

Waters AccellPlus ion-exchange packings are 40 µm, 300 Å polymer-coated, silica-based materials for both lab- and process-scale chromatography. AccellPlus, available as a QMA (strong anion exchanger) or CM (weak cation exchanger) is easy to pack and is excellent for the purification of proteins, enzymes, and immunoglobulins. The rigid silica-based packing material will withstand very high flow rates during cleaning and re-equilibration cycles. Normal flow rates are used during sample loading and elution to obtain the best possible resolution.

AccellPlus bulk material may be packed into our Advanced Purification (AP) Glass Columns.

¹To estimate packed bed volume for a known amount of AccellPlus:

AccellPlus used (g) \times 2 = packed bed volume (mL)

AccellPlus Sep-Pak Cartridges

Sep-Pak Plus Cartridges packed with AccellPlus ion exchangers provide a rapid, economical means to clean up heavily contaminated samples that would damage a high resolution column. They can also be used to rapidly screen chromatographic conditions. These are also available in a variety of configurations.

Ordering Information

AccellPlus Sep-Pak Cartridges

Description	Ion-Exchange Type	P/N
AccellPlus CM	Weak Cation Exchanger	WAT020550
AccellPlus QMA	Strong Anion Exchanger	WAT020545
AccellPlus QMA Plus	Strong Anion Exchanger	186004540

AccellPlus PrepPak Cartridges (47 × 300 mm)

Economical, convenient preparative separations in the 500 mg to 10 g range. For a complete listing of Waters products for preparative chromatography, visit www.waters.com

Protein Binding Capacity of AccellPlus			
AccellPlus QMA* 200 mg BSA/g packing	AccellPlus CM** 175 mg Cytochrome c/g packing		
* Bovine serum albumin in 20 mM Tris/Cl pH 7.0 was used to measure protein binding capacity of AccellPlus QMA.			
** Cytochrome c in 20 mM sodium phosphate pH 6.3 was used to measure protein binding capacity of AccellPlus CM.			

Note: For best resolution do not exceed 20% of the protein binding capacity.

Ordering Information

AccellPlus PrepPak Cartridges (47 × 300 mm)

Description	Particle Size	Pore Size	P/N
AccellPlus CM*	40 µm	300 Å	WAT036545
PrepPak 1000 Module	_	-	WAT089592

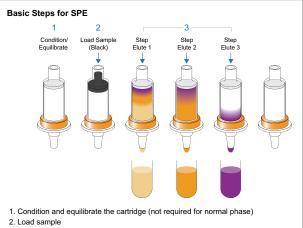
* Requires PrepPak 1000 Module.

AccellPlus Ion-Exchange Bulk Packings

For all preparative isolations based on ionic interactions, particularly proteins, enzymes, and immunoglobulins.

Ion-Exchange Sample Preparation with Sep-Pak Cartridges

To perform ion-exchange sample preparation with Sep-Pak[™] Cartridges, use a gradient of pH or ionic strength with Accell Plus CM, AccellPlus QMA or NH₂ as a sorbent.


- Condition the cartridge with six to ten hold-up volumes of de-ionized water or weak buffer
- Load the sample dissolved in a solution of deionized water or buffer
- Elute unwanted weakly bound components with a weak buffer
- Elute the first component of interest with a stronger buffer (change the pH or ionic strength)
- Elute other components of interest with progressively stronger buffers
- When you recover all of your components, discard the used cartridge in an appropriate manner

Ordering Information

AccellPlus Ion-Exchange Bulk Packings

Description	Particle Size	Pore Size	Qty.	P/N
AccellPlus QMA	40 µm	300 Å	100 g	WAT010742
Anion Exchanger	-	_	500 g	WAT010741
AccellPlus CM	40 µm	300 Å	100 g	WAT010740
Cation Exchanger	_	_	500 g	WAT010739

General Elution Protocol for Ion-Exchange Chromatography on Sep-Pak Cartridges (NH₂, AccellPlus QMA, AccellPlus CM)

3. Elute components-increase strength of mobile phase in steps

Protein-Pak Affinity Columns

The Protein-Pak Affinity epoxy-activated packing consists of 40 µm, 500 Å pore size particles having a hydrophilic bonding layer with a glycidoxypropyl functionality resulting in a seven atom spacer arm. The epoxy-activated surface can immobilize a wide range of ligands via a covalent linkage with amino, hydroxyl or sulfhydryl groups using simple coupling procedures. For method screening or small scale separation, choose the convenience of pre-packed microcolumns. Larger-scale separations are easily achieved by packing bulk material in our Advanced Purification (AP) Glass Column.

To estimate packed bed volume for a known amount of Protein-Pak Affinity Epoxy-Activated packing:

Protein-Pak Affinity Epoxy-Activated used (g) × 2 = packed bed volume (mL)

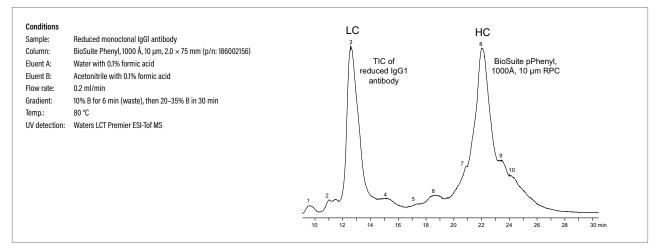
Purification of Carbonic Anhydrase

Conditions								
Ligand:	Sulfanila	amide, 1	80 µmo	l/g				
Column:	AP-1 Gla	ss, 10 ×	100 mm	n (p/n: WAT021992)		•		
Buffer A:	100 mM	tris sulf	ate with	n 200 mM sodium sulfat	e, pH 8.7	Δ		
Buffer B:	200 mM	potass	ium thio	ocyanate in 50 mM tris s	ulfate, pH 6.5			
Gradient:	Time (min)	Pro %A	ofile %B	Flow Rate (mL/min)			1	
	Initial	1	100	0			$\langle \rangle$	
	1	2	100	0				
	2	7	0	100				
	2	17	100	0 2				
UV detection:	280 nm							
Protein load:				ysate yielded 0.6 mg of of esterase activity	carbonic anhydrase			
Compound								
1. Carbonic anh	iydrase						30 min	

Waters Protein-Pak Affinity material can be successfully used to create an affinity resin as shown in the example of the affinity purification for the protein carbonic anhydrase.

Ordering Information

Protein-Pak Affinity Columns


Particle Packing	Particle Size	Pore Size	Qty.	P/N
Protein-Pak Affinity	40 µm	500 Å	25 g	WAT030653
Epoxy-Activated Packing	_	-	100 g	WAT030654
Protein-Pak Affinity Epoxy-Activated MicroColumn (500 mg of material in a 3 cc syringe barrel). Inquire for additional offerings.	40 µm	500 Å	10/box	WAT035955

BioSuite pC18 and pPhenyl Reversed-Phase Chromatography (RPC) HPLC Columns

Reversed-phase chromatography (RPC) has become a widely accepted tool for the separation of proteins, peptides, synthetic oligonucleotides, and other biomolecules. For many applications, Symmetry and Symmetry300, Atlantis[™] T3, or BEH 130 Å and BEH 300 Å chemistries can be successfully used for the isolation and analyses of these biocompounds. However for some applications, the large pore size and high chemical stability of BioSuite phenyl C₁₈ and pPhenyl resin-based packings may be preferred. BioSuite RPC Column offerings include a C₁₈ (pC₁₈) and a phenyl (pPhenyl) chemistry bonded to a pH stable, methacrylic ester-based polymeric resin. The 500 Å pore size of the pC₁₈ base matrix accommodates proteins up to 2,500,000 Daltons.

The BioSuite pC_{18} , 2.5 µm, NP Column contains a non-porous chemistry that yields superior chromatographic resolution in less time compared to chromatography performed on the porous, pC_{18} , 500 Å, 7 µm RPC selection. Waters' porous, pC_{18} , 500 Å, 7 µm RPC Column is available for applications requiring greater binding capacity. The pC_{18} and pPhenyl RPC chemistries are available in 21.5 × 150 mm columns for "lab-scale" isolations while a 2.0 × 75 mm column is well suited for narrow-bore HPLC and LC-MS applications.

LC-MS Analysis of a Reduced Monoclonal IgG1 Antibody on a BioSuite pPhenyl RPC Column

The BioSuite pPhenyl, 1000 Å RPC Columns have a higher ligand density compared to the BioSuite Phenyl, 1000 Å HIC Columns and are not recommended for hydrophobicinteraction separations.

Ordering Information

BioSuite Hydrophobic-Interaction Chromatography HPLC and UHPLC Columns

Description	Matrix	Dimension	P/N
BioSuite Phenyl, 10 µm HIC	Polymer	7.5 × 75 mm	186002159
BioSuite Phenyl, 13 µm HIC	Polymer	$21.5 \times 150 \text{ mm}$	186002160

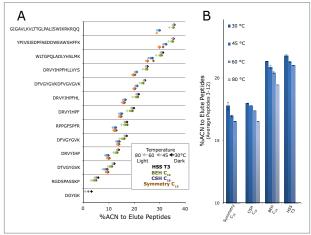
Nano- and Micro-Flow LC-MS

Contents

ionKey/MS	121
Simplified Micro-Flow LC-MS with Enhanced Sensitivity	
iKey Separation Device	122
Nano- and Micro-Flow Columns and Trapping Columns	124
Separation Columns	
Trapping Columns	
ACQUITY UPLC M-Class with HDX Technology	126
Enzymate Pepsin Online Digestion Column	
LC-MS Accessories	127
TruView LCMS Certified Vials	
Waters Certified Containers	
pH Buffers	

Nano- and Micro-Flow LC-MS

Our nano- and micro-flow LC Columns fully exploit the separation power of small, sub-2-µm particles to deliver superior chromatographic resolution.


The selected stationary phases for nano-LC columns facilitate the efficiency and selectivity required for separations of complex peptide and protein separations as well as other sample-limited analyses.

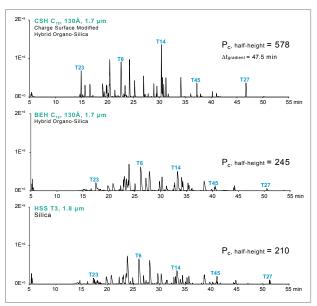
	Hybrid Particles		Silica-based Particles
			
BEH) Technology ⁻	CSHT	HESS
130 Å	300 Å	130 Å	100 Å
1.7 µm	1.7 µm	1.7 µm	1.8 µm
C ₁₈	C ₁₈ , C ₄	C ₁₈	Т3

Peptide Separation Technology stationary phases are specifically QC tested with tryptic digests of cytochrome *c* to ensure consistent performance for peptide separations.

Protein Separation Technology stationary phases are specifically designed for the high resolution analysis of proteins of various sizes, hydrophobicities, and isoelectric points. Particles are QC tested using a protein standard mix.

Trap Elute Peptide Separation




Peptide retentivity comparison of different stationary phases, including Symmetry Silica (the lower retention of Symmetry is used in trap-elute separations).

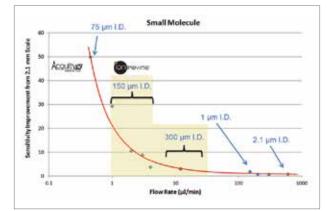
For more information on Waters Particle Technology, please refer to page 77.

In nano- and micro-flow LC-MS, analyzing large-volume samples using a single column can be impractical. In such cases, you can trap analytes at higher flow rates. It is preferable to perform online trapping of analytes at microscale flow rates and to subsequently elute and separate those analytes across an analytical column, wherein a significantly lower nanoscale flow rate is employed.

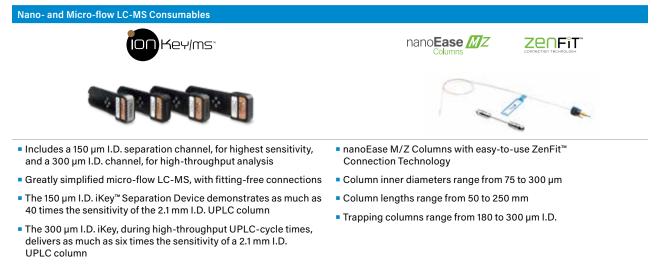
To be effective, the trapping column's retentivity must be lower than that of the analytical column. This relationship between trapping and analytical columns ensures refocusing of analytes on the analytical column after elution from the trap at the start of the gradient, delivering high peak capacity separations.

Comparison of a base peak ion chromatogram of MassPREP Enolase Digestion Standard, 1 μg , direct injection on a 75 μm (l.D.) column.

119


Nano- and micro-flow LC-MS is commonplace in areas of bio-separation such as peptide bioanalysis, intact antibody analysis, proteomics, lipidomics and metabolomics. This technique addresses limited sample availability and the need for high sensitivity and the requirement for low limits of detection or quantification.

In micro-flow LC-MS, the inner diameter of the separation column, and thus the flow rate of the mobile phase can dramatically alter the sensitivity of the mass spectrometry as follows:

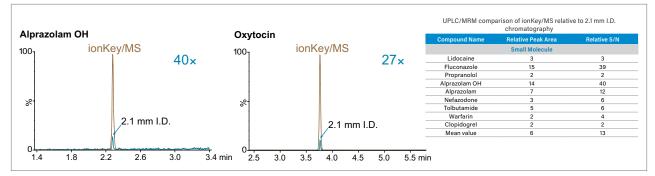

- By increasing sampling efficiency
- By increasing ionization efficiency
- By reducing matrix effects

Nano LC-MS provides a higher sensitivity increase, compared with 2.1 mm UPLC Columns. Micro-flow separations, which use larger-diameter columns, increase sample throughput dramatically while continuing to deliver excellent sensitivity for many complex biomolecular analyses. We offer solutions that satisfy the most demanding requirements for assays that rely on nano- and micro-flow LC-MS technology—solutions that ensure the assays' successful performance.

Gaining Sensitivity by Reducing Column Diameter and Flow Rate

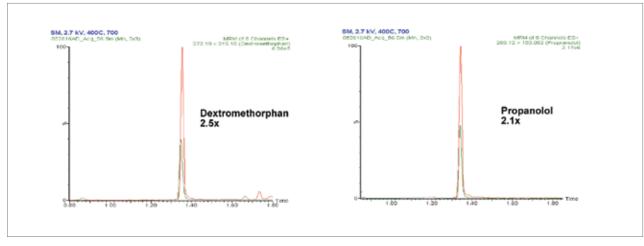
Sensitivity enhancement for a series of small molecules relative to a 2.1 mm I.D. separation performed on an ACQUITY UPLC System. The volume and concentration of sample injected on each column format was identical.

Easy post-column addition of MS-modifier solvents


120 / www.waters.com/biosep

SIMPLIFIED MICRO-FLOW LC-MS WITH ENHANCED SENSITIVITY

The ionKey/MS[™] System integrates the micro-flow UPLC separation into the source of the mass spectrometer. This delivers LC-MS system performance and sensitivity that cannot be achieved any other way. ionKey/MS Systems are enabled by the iKey Separation Device, which replaces the need for traditional fittings and columns and simplifies the user experience. The "plug and play" design of the iKey Separation Device eliminates operator variability common in traditional micro-flow LC-MS analyses.



The ionKey MS System with the ACQUITY UPLC M-Class System and Xevo TQ-S Mass Spectrometer.

150 μm l.D. iKey: Up to 40× Increase in Sensitivity Compared to 2.1 mm UPLC LC-MS Applications

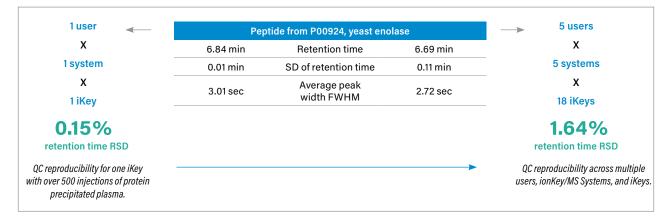
Sensitivity comparison between ionKey/MS and 2.1 mm I.D. chromatography; 1 µL injection of equal sample load on each.

300 µm I.D. iKey HT: Increased LC-MS Sensitivity with UPLC Throughput

Sensitivity gains using (300 μ m × 50 mm) iKey HT BEH C₁₈ Separation Device (red) compared to (2.1 mm × 50 mm) UPLC BEH C₁₈ Column (green) under identical injection volume and gradient conditions.

iKey Separation Device

In an ionKey/MS System, the iKey Separation Device contains the fluid connections, electronics, ESI interface, column heater, eCord, and chemistry needed to perform UPLC separations. As such, it replaces the need for traditional fittings and columns, simplifying the user experience. The "plug and play" design of the iKey eliminates user-dependent variation in results that often occurs in traditional micro-flow LC-MS analyses, regardless of users' skill level.



Device performs sub-2-µm UPLC separations, resulting in highly sensitive, efficient, micro-flow LC-MS analyses.

The iKey Separation device is available with two inner diameters: $150 \mu m$ I.D. which provides the highest level of sensitivity, and the $300 \mu m$ I.D. iKey HT for higher throughput separations.

The PCA iKey incorporates a separation channel as well as a post-column addition (PCA) channel. The design allows for mixing the mobile phase post separation with a desired solvent. Both effluents are merged and collected at the inlet of the emitter. Post-column addition of solvents can enhance the electrospray process and increase sensitivity without adversely affecting the separation.

Robust, Reproducible, and Reliable

The iKey Separation Device is LC-MS tested to ensure consistent performance not only for a particular iKey but from one iKey to another. The device also exhibits robust performance—performance that achieves high-quality results, even after hundreds of injections.

Ordering Information

iKey Separation Devices

	Particle Size: 1.7 µm		
	Dimension	P/N (1/pk)	
BEH C ₁₈ , 130 Å	150 µm × 50 mm	186007256	
	150 $\mu m \times 50$ mm (PCA)	186007580	
	150 µm × 100 mm	186007258	
CSH C ₁₈ , 130 Å	150 µm × 50 mm	186007244	
	$150\mu\text{m} imes 100\text{mm}$	186007245	
HSS T3, 100 Å	150 µm × 50 mm	186007260	
	150 μ m $ imes$ 100 mm	186007261	
	300 µm × 50 mm	186008727	

iKey Protein Separation Devices

	Particle Size: 1.7 µm	
	Dimension	P/N (1/pk)
BEH C ₄ , 300 Å	$150\mu\text{m} imes50\text{mm}$	186006765
	$150 \mu\text{m} imes 100 \text{mm}$	186006968

iKey Utility Devices

	Dimension	P/N (1/pk)
iKey Infusion Device	85 µm × 50 mm	186007049
iKey Flow Injection Analysis Device	85 µm × 50 mm	186007051
iKey Diagnostic Device V3	n/a	186008450

iKey Peptide Separation Devices

	Particle Size: 1.7 µm Dimension P/N (1/pk)	
BEH C ₁₈ , 130 Å	150 µm × 50 mm	186006764
	150 µm × 50 mm (PCA)	186007557
	150 µm × 100 mm	186006766
CSH C ₁₈ , 130 Å	150 µm × 50 mm	186007257
	150 µm × 100 mm	186007259
BEH C ₁₈ , 300 Å	150 µm × 50 mm	186006969
	150 µm × 100 mm	186006970

Nano- and Micro-Flow Columns and Trapping Columns

Waters Columns for nano-to-microscale LC-MS analyses are designed for low-dispersion nano-UPLC Systems. Our rigorous quality-control measures ensure that the columns achieve their full potential for sensitivity, resolution, and reproducibility for biomarker discovery and also for identifying and characterizing peptides and proteins.

SEPARATION COLUMNS

These columns enable nano- and microscale separations with MS detection under UPLC conditions at 15,000 psi. They take full advantage of the separation power of sub-2- μ m particle technology. Columns between 75 and 300 μ m I.D. provide chromatographic separations with flow rates between 200 nL/min and 100 μ L/min, covering a 170-fold range of sample amounts. The varying characteristics of available particle technologies provide alternate selectivity, retentivity, and loadability, and thus the flexibility to achieve the most suitable separation for complex LC-MS analyses.

TRAPPING COLUMNS

Trapping columns are used to desalt and enrich the sample before eluting onto the analytical column for the final separation with MS detection. For fast loading of the trap column and to reduce the cycle time, trap columns are packed with larger 5 µm particles.

nanoEase M/Z Columns with ZenFit Connection Technology

Waters ZenFit Connection Technology introduces easyto-use, re-usable, fingertight, liquid-line connectors to the family of nanoEase M/Z Columns. These columns are capable of withstanding pressures as high as 15,000 psi and eliminating dead volume, a frequent source of variability associated with regular fittings. ZenFit Connection Technology does not require user training or any further special attention.

*To use nanoEase M/Z Columns on the ACQUITY UPLC M-Class System, equip systems with the appropriate upgrade kit. The 300 μm I.D. ACQUITY UPLC M-Class Columns and Traps are compatible with ZenFit Connections.

Ordering Information

nanoEase M/Z Peptide Columns

	Particle Siz	Particle Size: 1.7 µm	
	Dimension	P/N (1/pk)	
BEH C ₁₈ , 130 Å	75 µm × 100 mm	186008792	
	$75\mu\text{m} imes150\text{mm}$	186008793	
	$75\mu\text{m} imes200\text{mm}$	186008794	
	$75\mu\text{m} imes250\text{mm}$	186008795	
	100 µm × 100 mm	186008796	
	$150\mu\text{m} imes 100\text{mm}$	186008797	
BEH C ₁₈ , 300 Å	75 µm × 100 mm	186008798	
	$75\mu\text{m} imes150\text{mm}$	186008799	
	$75\mu\text{m} imes200\text{mm}$	186008800	
	$75\mu\text{m} imes250\text{mm}$	186008801	
	100 µm × 100 mm	186008802	
	$150\mu\text{m} imes 100\text{mm}$	186008803	
CSH C ₁₈ , 130 Å	75 µm × 100 mm	186008807	
	$75\mu m imes 150mm$	186008808	
	$75\mu\text{m} imes200\text{mm}$	186008809	
	$75\mu m imes 250mm$	186008810	
	100 µm × 100 mm	186008811	
	$150 \mu\text{m} imes 50 \text{mm}$	186008812	
	$150\mu\text{m} imes100\text{mm}$	186008813	
	150 µm × 150 mm	186008814	

nanoEase M/Z Protein Columns

	Dimension	P/N (1/pk)
	Particle Si	ze: 1.7 µm
BEH C₄, 300 Å	75 µm × 100 mm	186008804
	$100 \mu\text{m} imes 100 \text{mm}$	186008805
	$150\mu\text{m} imes 100\text{mm}$	186008806

nanoEase M/Z HSS Columns

	Dimension	P/N (1/pk)
	Particle Size: 1.8 µm	
HSS T3, 100 Å	75 µm × 100 mm	186008815
	$75\mu\text{m} imes150\text{mm}$	186008816
	75 µm × 200 mm	186008817
	75 µm × 250 mm	186008818
	100 µm × 100 mm 186	186008819
	150 µm × 100 mm	186008820

i nanoEase M/Z Columns and ACQUITY UPLC M-Class Columns are preferred for use with the ACQUITY UPLC M-Class and nanoACQUITY UPLC Systems.

nanoEase M/Z Trap Columns*

	Particle Size: 5 µm	
	Dimension	P/N (1/pk)
Symmetry C ₁₈ , 100 Å	180 µm × 20 mm	186008821

*For 300 μm I.D. traps please refer to M-Class Trap Columns.

ACQUITY UPLC M-Class Columns

	Particle Size: 1.8 µm	
	Dimension	P/N (1/pk)
HSS T3, 100 Å	$75\mu\text{m} imes100\text{mm}$	186008006
	$75\mu\text{m} imes150\text{mm}$	186007473
	$75\mu\text{m} imes 200\text{mm}$	186008007
	$75\mu\text{m} imes 250\text{mm}$	186007474
	100 μ m $ imes$ 100 mm	186008008
	150 μ m $ imes$ 100 mm	186008009
	$300 \mu m imes 50 mm$	186007559
	$300 \mu\text{m} imes 100 \text{mm}$	186007560
	$300\mu\text{m} imes150\text{mm}$	186007472

ACQUITY UPLC M-Class Trap Columns

	Particle Si	Particle Size: 5 µm	
	Dimension	P/N (1/pk)	
Symmetry C ₁₈ , 100 Å	180 µm × 20 mm	1860074964	
	$180 \mu\text{m} \times 20 \text{mm}$	1860074975	
	180 µm × 20 mm	186007500 ⁶	
	$180 \mu\text{m} \times 20 \text{mm}$	186007592 ⁷	
Symmetry C ₁₈ , 100 Å	300 µm × 25 mm	186007499 ³	
	$300\mu\text{m} imes50\text{mm}$	186007498	
Peptide BEH C ₁₈ , 130 Å	300 µm × 50 mm	186007471	
BEH C ₄ , 300 Å	300 µm × 50 mm	186008470	
HSS T3, 100 Å	300 µm × 50 mm	186008029	

³ Configuration	HCP	(2D)	

⁴Configuration: 2G, V/M.

⁵Configuration: 2D, V/M.

⁶Configuration: 2G, V/V.

⁷Configuration: 2D, V/V.

ACQUITY UPLC M-Class Peptide Columns

	Particle Siz	Particle Size: 1.7 µm	
	Dimension	P/N (1/pk)	
3EH C ₁₈ , 130 Å	75 μm × 100 mm	186007481	
	75 μm × 150 mm	186007482	
	$75\mu\text{m} imes 200\text{mm}$	186007483	
	$75\mu\text{m} imes250\text{mm}$	186007484	
	100 µm × 100 mm	186007485	
	150 µm × 100 mm	186007486	
	$300\mu\text{m} imes50\text{mm}$	186007564	
	300 µm × 100 mm	186007565	
	300 µm × 150 mm	186007566	
BEH C ₁₈ , 300 Å	75 µm × 100 mm	186007487	
	$75\mu\text{m} imes 150\text{mm}$	186007490	
	$75\mu m imes 200mm$	186007491	
	$75\mu m imes 250mm$	186007492	
	$100 \ \mu m \times 100 \ mm$	186007488	
	$150 \mu\text{m} imes 100 \text{mm}$	186007489	
	$300\mu\text{m} imes50\text{mm}$	186007570	
	$300 \mu\text{m} imes 100 \text{mm}$	186007571	
	$300\mu\text{m} imes150\text{mm}$	186007572	
CSH C ₁₈ , 130 Å	$75\mu m imes 100mm$	186007475	
	75 µm × 150 mm	186007476	
	$75\mu m imes 200mm$	186007477	
	$75\mu m imes 250mm$	186007478	
	100 μ m × 100 mm	186007479	
	150 μ m $ imes$ 50 mm	186007513	
	150 μ m × 100 mm	186007480	
	150 μ m × 150 mm	186007514	
	$300\mu\text{m} imes50\text{mm}$	186007561	
	$300 \mu\text{m} imes 100 \text{mm}$	186007562	
	300 µm × 150 mm	186007563	

ACQUITY UPLC M-Class Protein Columns

	Particle Siz	Particle Size: 1.7 µm	
	Dimension	P/N (1/pk)	
BEH C ₄ , 300 Å	75 μm × 100 mm	186007493	
	$100 \ \mu m \times 100 \ mm$	186007494	
	150 µm × 100 mm	186007495	
	300 µm × 50 mm	186007567	
	$300 \mu\text{m} imes 100 \text{mm}$	186007568	
	300 µm × 150 mm	186007569	

ACQUITY UPLC M-Class with HDX Technology

Hydrogen-deuterium exchange mass spectrometry (HDS-MS) is used to study a protein's structural dynamics and conformational changes, a component of understanding its higher-order structure. Information about protein conformation from an HDX-MS study can serve to compare a control compound with an analyte by measuring the relative amount of deuteration uptake. HDX-MS can monitor domain interaction, localized-protein breathing, and folding or unfolding in the solution phase. The ACQUITY UPLC M-Class System can quantify small changes in protein conformation by extending its pressure range to effect a higher-efficiency separation. An integral part of the ACQUITY UPLC M-Class HDX System is the Waters Enzymate[™] BEH Pepsin Column, which performs online protein digestion.

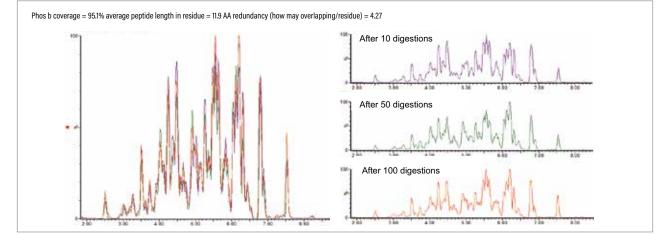
ACQUITY UPLC M-Class System.

Enzymate Pepsin Online

Digestion Column.

The technology offers these benefits:

- True UPLC separations for peptide and protein HDX
- Reproducible, robust, and rapid separations (nano-to-micro-scale at 0 °C and pressure to 15,000 psi)


ENZYMATE PEPSIN ONLINE DIGESTION COLUMN

Waters Enzymate Pepsin Online Digestion Column digests intact proteins into peptides. The peptic peptides are then retained on a trapping column. Peptides eluting from the trapping column are refocused onto a sub-2-µm ACQUITY UPLC Column and then eluted into a high-resolution mass spectrometer.

Enzymate Pepsin Online Digestion Columns, an integral part of the ACQUITY UPLC M-Class HDX System, offer these benefits:

- Fast, reproducible, and efficient online protein digestion, typically within 30 seconds
- Shortened preparation time (overall) for protein samples
- Ability to optimize the efficiency of protein digestion by changing temperature, flow rate, or both


Overlay of Three Phos B Digestions within a 130-Injection HDX MS Study

Reproducible online pepsin digestions of phosphorylase b. A total of 130 digestions were performed using an Enzymate Pepsin Column. The 10th 50th and 100th digestions are shown. The sequence coverage is shown on the right.

126

Comparisons of Low- and High-Pressure Digestion Efficiencies

The Waters Enzymate BEH Pepsin Column was used for digestion of IgG2, at 1000 psi (NP), and 13,000 psi (HP). Results show high-pressure digestion increases protein-sequence coverage and spatial resolution of IgG2, compared with low-pressure digestion.

LC-MS Accessories

TRUVIEW LCMS CERTIFIED VIALS

TruView[™] LCMS Certified Vials include stringent dimensional tolerances plus UV and MS cleanliness testing. The additional product attribute of TruView Vials is low polar analyte adsorption. The vials are manufactured by a process that limits the concentration of free ions on the surface of glass; ionic sites can cause analyte adsorption. Waters TruView LCMS Certified Vials are tested for high recovery of analyte at 1 ng/mL concentration using UPLC-MS/MS (MRM) and yield little adsorption. These vials exhibit the lowest adsorption of autosampler vials in the market.

Ordering Information

TruView LCMS Certified Vials

Description **Clear Glass** Amber Glass Max Recovery **Total Recovery** Amber Max Recovery TruView LCMS Certified Vials, 100/pk 186005666CV 186005661CV 186005662CV 186005663CV 186005670CV with cap and pre-slit silicone/PTFE septa TruView LCMS Certified Vials, 100/pk 186005660CV 186005667CV 186005668CV 186005669CV 186005664CV with cap and silicone/PTFE septa

Ordering Information

Enzymate Pepsin Online Digestion Column

	Particle Size: 5 µm		
Description	Dimension	P/N (1/pk)	
Enzymate Pepsin Online Digestion Column	2.1 × 30 mm	186007233	

WATERS CERTIFIED CONTAINERS

Waters Certified Containers are uniquely processed, treated, and certified in the same unique manner as our highly regarded low TOC vials.

Ultra-clean containers can be used on any LC system, including UPLC, LC/UV, and LC-MS, among others Manufactured to stringent standards, they prevent extraneous peaks and baseline noise stemming from high TOC. To help assist with contamination prevention and facilitate recommended care and use, each container carries the Waters certified mark for easy differentiation in operational use.

Ordering Information

Certified Containers

Description P/N Certified Container Kit	
Kit contains: four certified 1 L bottles, three certified 500 mL bottles, 1860070	088
Kit contains: four certifieu i L botties, three certifieu 500 mL botties,	088
Low Volume Certified Container Kit	
Kit contains: five certified 250 mL clear bottles, one certified 1860072 500 mL clear bottle, one clean container cap kit	278
Certified Container, 1 L 1860070	089
Certified Container, 500 mL 1860070	090
Clean Container Cap Kit 205000	642

pH BUFFERS

These pH Buffers are directly traceable to NIST SRMs, mercury free, guaranteed stable for at least one year after your receipt, and are supplied with a full certificate of analysis.

Ordering Information

pH Buffers

Description	Volume	P/N
pH 4 Liter	1L	129
pH 4 Buffer	ΠL	129
pH7Liter	1L	133
pH 7 Buffer		
pH 10 Liter	11	137
pH 10 Buffer	1L	157
pH 4 Pint	1 pint	127
pH 4 Buffer		
pH 7 Pint	1 pint	101
pH 7 Buffer	1 pint	131
pH 10 Pint	1 pipt	135
pH 10 Buffer	1 pint	100

Waters Trademarks

©2019 Waters Corporation. Waters, The Science of What's Possible, UPLC, BEH Technology, Alliance, ACQUITY, XBridge, Empower, Connections INSIGHT, eCord, UNIFI, MassLynx, Xevo, SYNAPT, *Rapi*Fluor-MS, GlycoWorks, *Rapi*Gest, QDa, µElution, HDMS, Oasis, Arc, ACQUITY Arc, CSH, QuanRecovery, MaxPeak, OBD, XSelect, PrepPak, Symmetry, nanoACQUITY, BioResolve, VanGuard, XTerra, UltraPerformance LC, Sep-Pak, Atlantis, ionKey/MS, iKey, ZenFit, Enzymate, and TruView are trademarks of Waters Corporation. All other trademarks are the property of their respective owners.

Waters and The Science of What's Possible are trademarks of Waters Corporation.

©2019 Waters Corporation. Printed in the U.S.A. December 2019 720002148EN KP-SIG

www.waters.com